• ISSN 1000-0615
  • CN 31-1283/S
Volume 43 Issue 9
Sep.  2019
Article Contents
Turn off MathJax

Citation:

Marine ranching and fishery stock enhancement in the Xiangshan Bay

  • Corresponding author: Shengfa LI, lisf@ecsf.ac.cn
  • Received Date: 2019-06-20
    Accepted Date: 2019-08-29
  • In order to establish a marine ranching demonstration area in the Xiangshan Bay for an effective restoration of biological resources and maximum output of fisheries resources in natural waters, habitat for biological resources was built, suitable proliferation species were screened and applied, ranchable species were multiplied and harvested, and a series of assessment and management techniques were applied. Seven groups of reefs consisting of 15 hexagons and 1 000 roundtable frame-type induction reefs were constructed with an area of 25 hm2 and space of 53 810 m3. Large algae such as Laminaria japonica, Porphyra haitanensis and Gracilariopsis lemaneiformis were transplanted. Artificial ranch of 80 hm2 for algae, floating plane algae beds as majority and three-dimensional floating algae beds as assistance, were built. Twenty million shellfish including Scapharca subcrenata and Atrina pectinata were cultured by bottom sowing; 1.6 million fish such as Pseudosciaena crocea, Sparus macrocephlus, Nibea albiflora and Sebastiscus marmoratus were released annually; and ten million shrimps such as Fenneropenaeus chinensis, Marsupenaeus japonicas were released annually. Survey results show that the degree of eutrophication in ranch demonstration area has decreased, primary and secondary productivity improved significantly, with algae biomass 18 000 kg/hm2. Fishery resources exhibited positive response to the marine ranching. Nineteen months after reef deployment, species richness, the total biomass and abundance of demersal nekton assemblage in the impact area were 1.32, 2.04 and 1.49 times higher, respectively, than those in the control areas.
  • 加载中
  • [1] 杨红生. 我国海洋牧场建设回顾与展望[J]. 水产学报, 2016, 40(7): 1133-1140.Yang H S. Construction of marine ranching in China: reviews and prospects[J]. Journal of Fisheries of China, 2016, 40(7): 1133-1140(in Chinese).
    [2] 章守宇, 周曦杰, 王凯, 等. 蓝色增长背景下的海洋生物生态城市化设想与海洋牧场建设关键技术研究综述[J]. 水产学报, 2019, 43(1): 81-96.Zhang S Y, Zhou X J, Wang K, et al. Review of marine livestock ecological urbanization hypothesis and marine ranching construction key-technology against blue growth background[J]. Journal of Fisheries of China, 2019, 43(1): 81-96(in Chinese).
    [3] 姜亚洲, 林楠, 袁兴伟, 等. 象山港游泳动物群落结构及多样性[J]. 生态学杂志, 2013, 32(4): 920-926.Jiang Y Z, Lin N, Yuan X W, et al. Community structure and species diversity of nektons in Xiangshan Bay of East China[J]. Chinese Journal of Ecology, 2013, 32(4): 920-926(in Chinese).
    [4] 郭靖, 姜亚洲, 林楠, 等. 象山港水域虾类群聚结构特征[J]. 海洋渔业, 2013, 35(2): 143-151. doi: 10.3969/j.issn.1004-2490.2013.02.004Guo J, Jiang Y Z, Lin N, et al. Spatio-temporal patterns in shrimp assemblage structure in the Xiangshan Bay[J]. Marine Fisheries, 2013, 35(2): 143-151(in Chinese). doi: 10.3969/j.issn.1004-2490.2013.02.004
    [5] 林楠, 姜亚洲, 袁兴伟, 等. 象山港黄姑鱼的食物组成与摄食习性[J]. 中国水产科学, 2013, 20(6): 1284-1292.Lin N, Jiang Y Z, Yuan X W, et al. Diet composition and feeding ecology of Nibea albiflora in Xiangshan Bay, East China Sea[J]. Journal of Fishery Sciences of China, 2013, 20(6): 1284-1292(in Chinese).
    [6] 林楠, 姜亚洲, 袁兴伟, 等. 象山港黄姑鱼的繁殖生物学[J]. 海洋渔业, 2013, 35(4): 389-395. doi: 10.3969/j.issn.1004-2490.2013.04.003Lin N, Jiang Y Z, Yuan X W, et al. Reproductive biology of Nibea albiflora in Xiangshan Bay[J]. Marine Fisheries, 2013, 35(4): 389-395(in Chinese). doi: 10.3969/j.issn.1004-2490.2013.04.003
    [7] 程飞, 纪雅宁, 李倨莹, 等. 象山港海湾生态系统服务价值评估[J]. 应用海洋学学报, 2014, 33(2): 222-228. doi: 10.3969/J.ISSN.2095-4972.2014.02.010Cheng F, Ji Y N, Li J Y, et al. Valuation of ecosystem services in Xiangshan Bay[J]. Journal of Applied Oceanography, 2014, 33(2): 222-228(in Chinese). doi: 10.3969/J.ISSN.2095-4972.2014.02.010
    [8] 王宇坛, 李圣法, 杨林林, 等. 象山港春、夏季仔稚鱼种类组成结构特征[J]. 海洋渔业, 2017, 39(3): 286-296. doi: 10.3969/j.issn.1004-2490.2017.03.006Wang Y T, Li S F, Yang L L, et al. Species composition of larval and juvenile fish in the Xiangshan Bay in spring and summer[J]. Marine Fisheries, 2017, 39(3): 286-296(in Chinese). doi: 10.3969/j.issn.1004-2490.2017.03.006
    [9] 纪雅宁. 象山港海洋牧场建设适宜性评价[D]. 厦门: 厦门大学, 2013.Ji Y N. Sea ranching suitability assessment for Xiangshan Bay[D]. Xiamen: Xiamen University, 2013 (in Chinese).
    [10] 林军, 章守宇, 龚甫贤. 象山港海洋牧场规划区选址评估的数值模拟研究: 水动力条件和颗粒物滞留时间[J]. 上海海洋大学学报, 2012, 21(3): 452-459.Lin J, Zhang S Y, Gong F X. Numerical study on site selection evaluation of the marine ranching planning zone in Xiangshan Bay: hydrodynamic conditions and particle residence time[J]. Journal of Shanghai Ocean University, 2012, 21(3): 452-459(in Chinese).
    [11] 唐峰华, 李磊, 廖勇, 等. 象山港海洋牧场示范区渔业资源的时空分布[J]. 浙江大学学报(理学版), 2012, 39(6): 696-702. doi: 10.3785/j.issn.1008-9497.2012.06.018Tang F H, Li L, Liao Y, et al. Spatial and temporal distribution on fishery resources of marine pasture demonstration area in Xiangshan Harbor[J]. Journal of Zhejiang University (Science Edition), 2012, 39(6): 696-702(in Chinese). doi: 10.3785/j.issn.1008-9497.2012.06.018
    [12] 陈海峰, 王云龙, 廖勇, 等. 象山港人工鱼礁区浮游植物群落特征[J]. 海洋渔业, 2013, 35(4): 396-404. doi: 10.3969/j.issn.1004-2490.2013.04.004Chen H F, Wang Y L, Liao Y, et al. Community characteristics of phytoplankton in artificial reef areas of Xiangshan Bay[J]. Marine Fisheries, 2013, 35(4): 396-404(in Chinese). doi: 10.3969/j.issn.1004-2490.2013.04.004
    [13] 杜秀宁, 王云龙, 陈涛, 等. 象山港浮游动物桡足类群落季节变化[J]. 生态学杂志, 2013, 32(10): 2756-2763.Du X N, Wang Y L, Chen T, et al. Seasonal variation of zooplankton copepod community in Xiangshan Bay of East China[J]. Chinese Journal of Ecology, 2013, 32(10): 2756-2763(in Chinese).
    [14] 王菲菲, 章守宇, 林军. 象山港海洋牧场规划区叶绿素a分布特征研究[J]. 上海海洋大学学报, 2013, 22(2): 266-273.Wang F F, Zhang S Y, Lin J. Study of chlorophyll a distribution in marine ranching planning area of Xiangshan Bay[J]. Journal of Shanghai Ocean University, 2013, 22(2): 266-273(in Chinese).
    [15] 魏虎进, 朱小明, 纪雅宁, 等. 基于稳定同位素技术的象山港海洋牧场区食物网基础与营养级的研究[J]. 应用海洋学学报, 2013, 32(2): 250-257. doi: 10.3969/J.ISSN.2095-4972.2013.02.015Wei H J, Zhu X M, Ji Y N, et al. Study on the food web structure and their trophic levels of marine ranching area in Xiangshan Harbor[J]. Journal of Applied Oceanography, 2013, 32(2): 250-257(in Chinese). doi: 10.3969/J.ISSN.2095-4972.2013.02.015
    [16] 姜亚洲, 林楠, 袁兴伟, 等. 象山港游泳动物群落功能群组成与功能群多样性[J]. 海洋与湖沼, 2014, 45(1): 108-114. doi: 10.11693/hyhz20120917001Jiang Y Z, Lin N, Yuan X W, et al. Functional group composition and functional diversity of nekton community in the Xiangshan Bay[J]. Oceanologia et Limnologia Sinica, 2014, 45(1): 108-114(in Chinese). doi: 10.11693/hyhz20120917001
    [17] 杨林林, 姜亚洲, 袁兴伟, 等. 象山港生态系统结构与功能的Ecopath模型评价[J]. 海洋渔业, 2015, 37(5): 399-408. doi: 10.3969/j.issn.1004-2490.2015.05.002Yang L L, Jiang Y Z, Yuan X W, et al. Evaluation on the ecosystem structure and function of Xiangshan Bay based on Ecopath model[J]. Marine Fisheries, 2015, 37(5): 399-408(in Chinese). doi: 10.3969/j.issn.1004-2490.2015.05.002
    [18] 杨林林, 姜亚洲, 袁兴伟, 等. 象山港典型增殖种类的生态容量评估[J]. 海洋渔业, 2016, 38(3): 273-282. doi: 10.3969/j.issn.1004-2490.2016.03.006Yang L L, Jiang Y Z, Yuan X W, et al. Ecological carrying capacity of typical enhancement species in Xiangshan Bay[J]. Marine Fisheries, 2016, 38(3): 273-282(in Chinese). doi: 10.3969/j.issn.1004-2490.2016.03.006
    [19] 张翼, 姜亚洲, 徐开达, 等. 锶元素对黑鲷幼鱼耳石的标记效果分析[J]. 海洋渔业, 2018, 40(2): 171-178. doi: 10.3969/j.issn.1004-2490.2018.02.006Zhang Y, Jiang Y Z, Xu K D, et al. Evaluation on effectiveness of marking juvenile Sparus macrocephalus Otoliths with strontium[J]. Marine Fisheries, 2018, 40(2): 171-178(in Chinese). doi: 10.3969/j.issn.1004-2490.2018.02.006
    [20] 张辉, 姜亚洲, 袁兴伟, 等. 大黄鱼耳石锶标志技术[J]. 中国水产科学, 2015, 22(6): 1270-1277.Zhang H, Jiang Y Z, Yuan X W, et al. Strontium marking on otolith of Larimichthys crocea[J]. Journal of Fishery Sciences of China, 2015, 22(6): 1270-1277(in Chinese).
    [21] 胡庆松, 陈德慧, 柏春祥, 等. 海洋牧场鱼类驯化中的声音监测系统设计[J]. 计算机测量及控制, 2011, 19(9): 2072-2074.Hu Q S, Chen D H, Bai C X, et al. Sound supervising system design in oceanic pasture fish taming[J]. Computer Measurement & Control, 2011, 19(9): 2072-2074(in Chinese).
    [22] Hu Q S, Chen D H, Wang W D, et al. Fish sound frequency domain analysis and acoustic spread distance experiment research[J]. Applied Mechanics and Materials, 2012, 117-119: 716-720.
    [23] 陈德慧, 刘洪生, 胡庆松, 等. 网箱中黑鲷音响驯化的诱集效果探究[J]. 上海海洋大学学报, 2012, 21(4): 554-560.Chen D H, Liu H S, Hu Q S, et al. Attractive effect of acoustic taming on Sparus macrocephalus in a cage[J]. Journal of Shanghai Ocean University, 2012, 21(4): 554-560(in Chinese).
    [24] 张磊, 胡庆松, 章守宇. 海洋牧场鱼类驯化装置设计与试验[J]. 上海海洋大学学报, 2013, 22(3): 398-403.Zhang L, Hu Q S, Zhang S Y. Design and experiment of fish domestication equipment for ocean ranching[J]. Journal of Shanghai Ocean University, 2013, 22(3): 398-403(in Chinese).
    [25] Hu Q S, Bao N, Rahman H A, et al. Effectiveness of stocking Sparus macrocephalus fry in situ in the East China Sea[J]. Aquaculture and Fisheries, 2019, 4(2): 74-79. doi: 10.1016/j.aaf.2018.12.002
    [26] 姜亚洲, 凌建忠, 林楠, 等. 象山港日本对虾增殖放流的效果评价[J]. 生态学报, 2012, 32(9): 2651-2658.Jiang Y Z, Ling J Z, Lin N, et al. Stocking effectiveness of hatchery-released kuruma prawn Penaeus japonicus in the Xiangshan Bay, China[J]. Acta Ecologica Sinica, 2012, 32(9): 2651-2658(in Chinese).
    [27] 姜亚洲, 林楠, 刘尊雷, 等. 象山港黄姑鱼增殖放流效果评估及增殖群体利用方式优化[J]. 中国水产科学, 2016, 23(3): 641-647.Jiang Y Z, Lin N, Liu Z L, et al. Effectiveness of Nibea albiflora stock enhancement in Xiangshan Bay and prioritization of fishing strategy for the released stock[J]. Journal of Fishery Sciences of China, 2016, 23(3): 641-647(in Chinese).
    [28] Yuan X W, Jiang Y Z, Lin N, et al. Using bioacoustics and conventional netting methods to assess the initial effectiveness of a newly deployed artificial reef on fish assemblages in Xiangshan Bay near Ningbo, Zhejiang Province, China[J]. Journal of Applied Ichthyology, 2013, 29(6): 1430-1435. doi: 10.1111/jai.12346
    [29] 陈涛, 廖勇, 王云龙, 等. 象山港人工鱼礁海域浮游动物群落生态变化[J]. 海洋通报, 2013, 32(6): 710-716. doi: 10.11840/j.issn.1001-6392.2013.06.015Chen T, Liao Y, Wang Y L, et al. Study of the ecological changes of zooplankton communities in the artificial reef waters in the Xiangshan Bay[J]. Marine Science Bulletin, 2013, 32(6): 710-716(in Chinese). doi: 10.11840/j.issn.1001-6392.2013.06.015
    [30] 杜秀宁, 王云龙. 象山港特定海域浮游动物生物量和物种年际及季节变化[J]. 海洋通报, 2014, 33(3): 293-298. doi: 10.11840/j.issn.1001-6392.2014.03.007Du X N, Wang Y L. Inter-annual and seasonal changes of zooplankton biomass and species in the specific region of the Xiangshan Bay[J]. Marine Science Bulletin, 2014, 33(3): 293-298(in Chinese). doi: 10.11840/j.issn.1001-6392.2014.03.007
    [31] Jiang Y Z, Lin N, Yuan X W, et al. Effects of an artificial reef system on demersal nekton assemblages in Xiangshan Bay, China[J]. Chinese Journal of Oceanology and Limnology, 2016, 34(1): 59-68. doi: 10.1007/s00343-015-4222-7
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article views(826) PDF downloads(17) Cited by()

Proportional views

Marine ranching and fishery stock enhancement in the Xiangshan Bay

    Corresponding author: Shengfa LI, lisf@ecsf.ac.cn
  • 1. East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai    200090, China
  • 2. College of Marine Ecology and Enviroment, Shanghai Ocean University, Shanghai    201306, China
  • 3. Ningbo Ocean and Fisheries Institution, Ningbo    315012, China

Abstract: In order to establish a marine ranching demonstration area in the Xiangshan Bay for an effective restoration of biological resources and maximum output of fisheries resources in natural waters, habitat for biological resources was built, suitable proliferation species were screened and applied, ranchable species were multiplied and harvested, and a series of assessment and management techniques were applied. Seven groups of reefs consisting of 15 hexagons and 1 000 roundtable frame-type induction reefs were constructed with an area of 25 hm2 and space of 53 810 m3. Large algae such as Laminaria japonica, Porphyra haitanensis and Gracilariopsis lemaneiformis were transplanted. Artificial ranch of 80 hm2 for algae, floating plane algae beds as majority and three-dimensional floating algae beds as assistance, were built. Twenty million shellfish including Scapharca subcrenata and Atrina pectinata were cultured by bottom sowing; 1.6 million fish such as Pseudosciaena crocea, Sparus macrocephlus, Nibea albiflora and Sebastiscus marmoratus were released annually; and ten million shrimps such as Fenneropenaeus chinensis, Marsupenaeus japonicas were released annually. Survey results show that the degree of eutrophication in ranch demonstration area has decreased, primary and secondary productivity improved significantly, with algae biomass 18 000 kg/hm2. Fishery resources exhibited positive response to the marine ranching. Nineteen months after reef deployment, species richness, the total biomass and abundance of demersal nekton assemblage in the impact area were 1.32, 2.04 and 1.49 times higher, respectively, than those in the control areas.

  • 海洋牧场建设和海洋生境修复是当前世界沿海国家发展海洋渔业的重点方向,基于生态系统管理的理念,通过人工鱼礁、海藻场建设和增殖放流等修复生态系统的措施,建立生境改善、鱼类增殖的海洋农牧化的资源利用模式。从现代渔业的发展趋势分析,资源管理型渔业将是新世纪海洋渔业发展的主要方向,而海洋牧场则是资源管理型渔业的主要方式之一[1-2]

    象山港地处浙江省中部沿海,是宁波东部沿海半封闭性港湾,为优良的增养殖基地,三面环山、岛礁众多,海域面积达391.76 km2,滩涂面积171.53 km2,海岸线长达270 km。港内生境类型多样,饵料生物丰富,为多种生物提供了良好的繁殖、育幼场所[3-8]。但是,近年来受到过度捕捞、海洋开发、海洋污染、海水养殖的影响,生态环境恶化越来越明显,渔业资源日益衰退。为保护海洋生态环境,恢复和培育近海渔业资源,2011年9月宁波市渔业主管部门正式启动象山港海洋牧场试验区建设(一期)项目,由宁波市海洋渔业研究院实施。海洋牧场拟建于象山港中底部铜山—白石山岛海域(图1),核心建设区总面积420 hm2,建设内容主要有投放人工鱼礁、规模化移植大型海藻、底播增殖经济贝类、规模化放流土著鱼类,1 000 m2资源增殖保护海上展示平台,投资估算6 000万元。

    Figure 1.  Location of marine ranching in the Xiangshan Bay

    中国水产科学研究院东海水产研究所和上海海洋大学在国家公益性行业(农业)科研专项“聚鱼增殖型海洋牧场高效利用配套模式研究与示范”等科研项目的支撑下,以象山港海洋牧场建设为契机,研发海洋牧场生境营造技术、适宜性品种筛选与应用技术、牧化品种增殖技术、牧场品种采捕技术、效果评估和管理技术,构建聚鱼增殖型海洋牧场高效利用配套技术模式,使之具备实现我国近海人工海洋牧场化的技术能力,建立核心示范样板区,实现天然水域渔业产出功能的最大化,以期为东海区海洋牧场营建和配套技术研究提供参考。

    • 以“压力—状态—响应”(pressure—state—response,PSR)为评价模型,搭建涵盖环境质量、生物生态等要素的海洋牧场条件适宜性评价指标体系,结合富营养化和污染物指标判定海洋牧场的类型,并对拟建海洋牧场示范区的建设方案及相关技术进行技术适宜性评估,从而提供较为系统的海洋牧场建设的适宜性评估方法(图2)。

      Figure 2.  Suitability evaluation process of marine ranching

      象山港海洋牧场项目符合宁波市海洋功能区划的主导功能定位,对增殖区和旅游区具有积极的促进作用,对邻近海域航道区和其他功能用海基本不会造成影响;象山港海域海洋环境水质、沉积物和生物质量总体良好,符合适宜等级;生物物种比较丰富,饵料生物较充足,由各类群生物生态的评价指数也基本符合适宜等级。综合各项适宜性评价结果,象山港适宜建设聚鱼增殖型海洋牧场。但象山港海域受到无机氮、活性磷酸盐污染较为明显,富营养化状况严重,曾发生过大规模赤潮,营养状态指数评价结果为不适宜。此外,底栖动物群落物种丰富度指数较低,群落结构简单化。因此,海洋牧场建设时要注重防止污染影响,采用大型藻礁、底播贝类和藻类养殖等改善水质和生物群落结构[9]

    • 应用海洋数值模式ECOM-si(estuarine coastal ocean model-semi-implicit)评估了象山港海洋牧场规划海域(白石山—中央山—铜山西北侧)的水动力条件;同时,耦合了一个拉格朗日质点追踪模块研究了规划区海域水体和颗粒物在象山港内的滞留时间,评估了海洋牧场建设对周边水环境的潜在辐射影响[10]。结果显示,海洋牧场规划区底层流速基本符合小于0.8 m/s的最高流速限制。综合考虑水深条件,人工鱼礁投放区设定在规划区西北侧水深6~10 m的范围内,可使表底层最大流速分别限制在1.2和0.6 m/s以下。海洋牧场规划区释放的质点追踪结果表明,90%左右的颗粒物质在象山港狭湾内的可存留时间大于2个月;以海洋牧场核心区周边5和10 km范围为判定依据时,质点释放后前30 d,离开海洋牧场核心区的质点比例增长较快,30 d后,基本达到稳定状态。质点释放1~2个月内,位于核心区5 km范围内的质点维持在30%~40%,位于核心区10 km范围内的质点则维持在80%左右。

    2.   象山港海洋牧场营建技术
    • 根据象山港海洋牧场建设海域的海况和地形底质特点,结合鱼礁建造的理论知识,先后进行了海洋牧场核心区人工鱼礁设计、单位鱼礁布局类型选择、鱼礁群的配置组合及投放方案的制定,并于2012年4月协助建设单位完成了由15个圆角六边形(其横截面为正六边形,对角线直径为5.0 m,高3.6 m,周壁镂空设计,单体总空方约70.0 m3)和1 000个台面框架型诱导礁(上下台面面积6.25 m2、高2.0 m,总空方数12.5 m3)组合而成的7个鱼礁群,总规模53 810 m3(图3)。人工鱼礁单体按照TA(50个台面框架型鱼礁构成)、TB(25个台面框架型鱼礁构成)、LA(3个圆角六边形鱼礁构成)和LB(单个圆角六边形鱼礁)等单位礁进行排列组合(图4)。

      Figure 3.  Layout of marine ranching in the Xiangshan Bay

      Figure 4.  Type and layout of unit reefs

      在综合考虑人工鱼礁区域特点的基础上并依据以下三个原则:一是礁群沿等深线走向布设,单个礁群相对独立,但能形成整体协同及规模效应;二是大礁群在外深水处,小礁群在内浅水处。其中,A型礁群由4个TA单位礁、1个LA单位礁构成;B型由4个TB单位礁、1个LB单位礁构成;C型由1个LB单位礁构成(图5);三是布设区域留有余地,以便以后增设礁群。

      Figure 5.  Types of different unit reefs

    • 以象山港海藻本底调查为基础,完成了15种海藻的室内培养研究,筛选出坛紫菜(Porphyra haitanensis)、龙须菜(Gracilariopsis lemaneiformis)、海带(Laminaria japonica)、羊栖菜(Sargassum fusiforme)、鼠尾藻(S. thunbergii)、大石花菜(Gelidium pacificum)等适宜目标建场海藻。

      首次设计研发2种适宜海藻生长、具备浮式鱼礁功能的海藻床。半浮体海藻床入水深度可控,满足单一藻类在不同生长期对光的需求;立体增殖鱼礁型海藻床为3层圆形框架结构,在满足海藻生长需要的同时,也可为在不同深度活动的中上层小型鱼类或仔稚幼鱼提供摄食栖息与避害场所(图6)。新式生态鱼礁解决了海洋牧场建设中鱼礁与藻场相分隔的问题,通过现场试验,具有建造与投放方便、藻类生长迅速等优点,可以作为一种新型的生态鱼礁在港湾型海域进行大面积推广应用。

      Figure 6.  Structure of three-dimensional (a) and semi-floating seaweed bed (b)

      以海带孢子为实验材料,完成了维尼纶绳、水泥、混凝土、瓦片、木板等基质的筛选以及苗种生长亲合性测试,所实验材料均具备海藻生殖细胞附着、生长的友好性。选用维尼纶网格(纳米纤维材质)作为建场海藻附着基质,进行室内海带苗种繁育实验,初期结果显示,其对海带生殖细胞附着和初步生长发育无抑制效应,显示出其良好的生物亲合性。

      基于前期藻种筛选、藻床设计等相关研究成果,2012年10月协助建设单位逐步开展海洋牧场区大型人工藻场的构建工作。以常规的浮式平面海藻床为主体,配置一定数量的半浮体海藻床和立体增殖鱼礁型海藻床,在海洋牧场核心区建场面积80 hm2,辐射区(奉化海区)建场面积866 hm2。2014年4月收获期,建场海藻主要物种海带(筛选种)长度平均为(153.1±12.4) cm,宽度为(21.6±2.8) cm,鲜重为(492.4±29.7) g。而当地养殖种(对照组)平均长度为(126.4±9.7) cm,宽度为(20.9±4.5) cm,鲜重为(458.1±41.5) g。鼠尾藻(筛选种)平均长度为103 cm,平均鲜重72.1 g。羊栖菜(筛选种)平均长度为96 cm,平均鲜重56.2 g。海洋牧场核心区海藻年生物量约为18 000 kg/hm2;辐射区海藻年生物量约为14 700 kg/hm2

    3.   海洋牧场区适宜增殖品种筛选和增殖关键技术
    • 查明了象山港渔业资源与生态环境特征[11-14],应用稳定同位素技术探明了象山港海洋牧场区食物网结构[15-16];通过构建Ecopath模型(生态通道模型),对象山港生态系统的发育和稳定性进行了系统评价,基于生态系统水平探索象山港海洋牧场区适宜增殖种类的筛选方法[17]

      研究发现,象山港海洋生态系统并不稳定,大量能量滞留在低营养级层级。针对此现状,建议海洋牧场区的增殖放流工作应分阶段进行。在初级阶段应全面分析各功能组之间的相互作用,适量提高海洋牧场区毛蚶(Scapharca subcrenata)和菲律宾蛤仔(Ruditapes philippinarum)等底栖滤食性贝类的比重,以提升浮游植物的利用效率,防范海洋牧场区水体富营养化的发生;与此同时,积极开展日本对虾(Marsupenaeus japonicus)、中国明对虾(Fenneropenaeus chinensis)等低营养层次、高经济价值生物种类的资源增殖工作,在有效提升生态系统营养转换效率、强化高营养层级饵料生物供给的同时,优化海洋牧场的渔获产出结构。在后续阶段,建议选择放流黄姑鱼(Nibea albiflora)、花鲈(Lateolabrax maculatus)和黑鲷(Sparus macrocephalus)等高营养层级鱼种,以最终实现修复衰退渔业种群,提升海洋牧场产出功能的目标。

      与此同时,基于Ecopath模型开展了重点增殖种类生态容量评估。通过不断增加特定放流品种的生物量,观察生态系统中饵料生物等其他功能群的变化,当模型中任意功能群的营养转换效率大于1时,模型将变得不平衡而改变当前的状态,在模型即将不平衡前的放流品种生物量值即为生态容量。经评估,日本对虾、黄姑鱼和黑鲷的增殖生态容量分别为0.129、0.018和0.116 t/km2。相比于生态系统内现存的生物量,3个种类均具有较大的增殖空间[18]

    • 区分放流群体和自然群体是准确评估增殖放流效果的基础,同时也是困扰增殖放流效果评价的主要难题。在借鉴国内外增殖苗种标记技术领域的先进经验基础上,经探索与实践,体长频率分步法、分子标记、体外挂牌标记分别可作为象山港海洋牧场区日本对虾、中国明对虾和黄姑鱼增殖苗种的标记判别方法。

      同时,耳石元素指纹标记技术得以成功应用。利用锶元素浓度为18 mg/L的富锶水体对池塘养殖阶段的黑鲷和大黄鱼(Larimichthys crocea)人工繁育幼鱼进行为期7~10 d的浸泡标记处理[19-20],可使标记处理个体在特定耳石区段的Sr/Ca值显著增高,形成可终生携带的耳石元素指纹标记;与此同时,富锶水体标记处理过程对标记个体的存活和生长发育状况不会产生显著负面影响。实证了耳石元素指纹标记技术确为一种便于规模化简便操作、成本低廉、稳定易检的无损化终身标记技术手段。

    • 音响驯化作为鱼类行为控制技术之一,对海洋牧场内的鱼种行为控制有明显的作用。在驯化声源中,目标鱼种栖息海域背景噪声有望具有更佳的驯化效果。为此,在天然水域的网箱中采用录制的黑鲷栖息地背景噪声对黑鲷进行了音响驯化[21]。根据现场观察及数据分析,自然海域声音配合投饵能对黑鲷产生较好的集聚效果。黑鲷幼苗音响驯化一般经历环境适应、对饵料的需求达到一定量、建立声音与摄食之间的条件反射这3个过程。黑鲷能识别声音,并维持一定的记忆时间。结果显示,采用海域背景噪声的音响驯化并配合投饵是一种有效的手段,可以使黑鲷对声音的短期记忆转化为长期记忆[22-23]

      与此同时,根据鱼类具有趋声性或趋光性的习性,设计了能定时播放声音和开启灯光,同时配合饵料定时定量供应的无人值守鱼类音响驯化装置;通过无线水下视频监控和定位通讯,实现了对驯化效果的监控和远程控制[24]。依托该驯化装置,建立了一套适用于黑鲷鱼苗的音响驯化增殖放流技术模式,明确了黑鲷音响驯化和增殖放流技术要点。根据实践验证,经音响驯化的黑鲷增殖放流个体的平均扩散距离不及未经音响驯化增殖放流个体的13%,音响驯化效果明显[25]

    • 底播毛蚶、栉江珧(Atrina pectinata)等贝类2 000万粒,年放流大黄鱼、黑鲷、黄姑鱼、褐鲳鲉(Sebastiscus marmoratus)等鱼类苗种160万尾,中国明对虾、日本对虾等虾类1亿尾。通过现场调查,阐明了日本对虾、黄姑鱼、黑鲷和毛蚶等象山港重要增殖种类的生态适应特征及生长迁徙规律。取得了诸如“日本对虾增殖群体无法在象山港完成整个生活史[26]”“11 055 尾黄姑鱼增殖放流鱼苗可产生737 kg回捕渔获收益,同时还向增殖水域补充了554 尾黄姑鱼初次性成熟个体[27]”等一系列原创性成果,为当地渔业资源增殖养护工作的决策提供了重要的技术支撑。此外,通过对不同增殖模式下日本对虾增殖效果的跟踪监测,探索出一种涵盖最适放流时间(4月)、地点(象山港底部)、规格(体长3 cm)和最优开发利用方式等多个增殖关键要素在内的象山港日本对虾增殖关键技术模式,使象山港日本对虾增殖工作的回捕效益提升10余倍。

    4.   象山港海洋牧场生态功效评估
    • 人工鱼礁的聚鱼功能是象山港海洋牧场建设的重要功能定位之一。人工鱼礁投放前后,海洋牧场营建区渔业资源的变化状况是需重点解决的技术问题。鉴于常规的渔业资源调查方式(如拖网调查)不适用于人工鱼礁区游泳动物采样,构建了一种基于声学评估的资源总量定量分析和基于流刺网调查的资源种类组成定性研究相结合的渔业资源调查方法,以综合反映海洋牧场区的游泳动物资源状况[28]

      通过对象山港海洋牧场建设前后目标水域水环境因子和生物要素的对比分析,系统评价了象山港海洋牧场的早期生态效应。研究发现,在海洋牧场建设后,牧场营建水域富营养化程度有所降低;浮游植物可直接利用的铵态氮含量大幅增加,促使该水域初级生产力显著提升;受益于浮游植物丰度的增加,浮游动物生物量和多样性指数较对照区明显增加[29-30]。海洋牧场的资源养护效果逐步显现,调查结果显示,人工鱼礁投放前,鱼礁区和对照区游泳动物资源密度与群落结构均无显著差异。人工鱼礁投放19个月后,鱼礁区游泳动物的物种丰富度、总生物量和总丰度分别为对照区1.32倍、2.04倍和1.49倍;与此同时,鱼礁区游泳动物群落结构也发生了明显演替,黑鲷和短吻三线舌鳎(Cynoglossus abbreviatus)等优质渔获种类所占游泳动物总生物量的比重明显上升,葛氏长臂虾(Palaemon gravieri)和鞭腕虾(Lysmata vittata)等小型虾类所占游泳动物总生物量的比重大幅下降。上述结果表明,象山港人工鱼礁建设显著促进了鱼礁区游泳动物物种丰富度的提升,资源总量大幅增殖,群落结构明显优化,人工鱼礁建设切实发挥了显著的渔业资源增殖养护功效[31]

      感谢中国海洋大学刘涛教授、宁波大学骆其君教授、厦门大学朱小明副教授、浙江省海洋水产研究所王伟定研究员及其他课题组成员在课题执行过程中的通力协作与付出的辛勤劳动。

Reference (31)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return