• ISSN 1000-0615
  • CN 31-1283/S
Volume 43 Issue 9
Sep.  2019
Article Contents
Turn off MathJax

Citation:

Static accumulation effect of two artificial reef monomer models

  • Corresponding author: Jun LIN, jlin@shou.edu.cn
  • Received Date: 2019-05-03
    Accepted Date: 2019-08-02
  • The trend of artificial reefs construction in China has following two aspects: using large-scale artificial reef construction project to enhance the ecological effect of hard substrate, and using offshore artificial reef construction to extend the stock enhancement function of hard substrate. Static accumulation experiment was conducted to analyse the stacking effect and performance of regular frame reef monomer and HUT reef monomer, which are commonly used for offshore reef pile construction in China. In view of the structure and shape of reef monomer, the index of coefficients, such as the volume growth rate, the volume ratio and stack slope angle of the two monomers (regular frame reef monomer vs. HUT reef monomer) models in the experiment were compared. Also, we compared the change of efficiency in different quantity between two monomers. The results showed that: ①using the same quantity monomer condition model, the volume growth rate of the regular frame reef monomer is higher than that of the HUT reef monomer, and the scale and bottom area of the artificial mound are relatively higher. regular frame reef: 7.799±0.057. This result demonstrated that regular frame reef monomer is more appropriate for artificial reef construction in slow current and shallow waters. While the volume ratio of the HUT monomer forming-mound structure is higher than that of the regular frame reef forming-mound structure. This result showed that HUT reef monomer forming mound is relatively taller and more permeable, which is more appropriate for offshore artificial reef construction project. ② From the perspective of the height contribution rate of two types of monomer mound, and the difference of the characteristics of the two monomers is fully demonstrated in our study. Specifically, to achieve effective physical effect of artificial reef mound, the minimum number of regular frame reef units is 28 while that of the HUT reef unit is 40.
  • 加载中
  • [1] 唐议, 邹伟红, 胡振明. 基于统计数据的中国海洋渔业资源利用状况及管理分析[J]. 资源科学, 2009, 31(6): 1061-1068. doi: 10.3321/j.issn:1007-7588.2009.06.023Tang Y, Zou W H, Hu Z M. An analysis of utilization status and management of marine fisheries resources in China based on statistics data[J]. Resources Science, 2009, 31(6): 1061-1068(in Chinese). doi: 10.3321/j.issn:1007-7588.2009.06.023
    [2] 杨红生. 我国海洋牧场建设回顾与展望[J]. 水产学报, 2016, 40(7): 1133-1140.Yang H S. Construction of marine ranching in China: reviews and prospects[J]. Journal of Fisheries of China, 2016, 40(7): 1133-1140(in Chinese).
    [3] 阙华勇, 陈勇, 张秀梅, 等. 现代海洋牧场建设的现状与发展对策[J]. 中国工程科学, 2016, 18(3): 79-84. doi: 10.3969/j.issn.1009-1742.2016.03.014Que H Y, Chen Y, Zhang X M, et al. Modern marine ranching: status and development strategy[J]. Engineering Science, 2016, 18(3): 79-84(in Chinese). doi: 10.3969/j.issn.1009-1742.2016.03.014
    [4] 王磊. 人工鱼礁的优化设计和礁区布局的初步研究[D]. 青岛: 中国海洋大学, 2007.Wang L. Primary study on optimize design and distribution of the artificial reef[D]. Qingdao: Ocean University of China, 2007 (in Chinese).
    [5] 李冠成, 王秉坤, 李明, 等. 人造海洋涌升流和海洋渔场[J]. 海洋技术, 2003, 22(2): 74-78. doi: 10.3969/j.issn.1003-2029.2003.02.017Li G C, Wang B K, Li M, et al. Artificial ocean upwelling current and ocean fishery[J]. Ocean Technology, 2003, 22(2): 74-78(in Chinese). doi: 10.3969/j.issn.1003-2029.2003.02.017
    [6] Numerical study on the effect of artificial mound settled in the shallow ocean for CO2 fixation[J]. Numerical study on the effect of artificial mound settled in the shallow ocean for CO2 fixation[J]. Marine Systems & Ocean Technology, 2015, 10(1): 18-25.
    [7] Kukert H, Smith C R. Disturbance, colonization and succession in a deep-sea sediment community: artificial-mound experiments[J]. Deep-Sea Research-Part A: Oceanographic Research Papers, 1992, 39(7): 1349-1371.
    [8] Yoshifumi Nakagawa, Kouji Maekawa, Michio Gomyo, et al. Integrated construction management and technologies for high-resolution placement of artificial mound reef[J]. Journal of Fisheries Engineering, 2010, 47(2): 101.
    [9] Jun Mitsui, Kazuo Nadaoka, Shin-ichi Ogata, et al. New fish reef block ensuring accurate placement by free-fall method[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2013, 139(6): 455. doi: 10.1061/(ASCE)WW.1943-5460.0000204
    [10] Honda K, Asami Y, Izutsu T, et al. Construction of artificial mound for upwelling generation constituted of fly-ash mortar blocks[J]. Concrete Journal, 2013, 51(7): 578-583. doi: 10.3151/coj.51.578
    [11] 李冠成, 王秉坤, 李明, 等. 不同水深处人造海洋上升流和海洋渔场及相关技术研究[J]. 海洋科学, 2004, 28(11): 49-56. doi: 10.3969/j.issn.1000-3096.2004.11.011Li G C, Wang B K, Li M, et al. Research and technique of artificial upwelling current in marine fishery at different depth[J]. Marine Sciences, 2004, 28(11): 49-56(in Chinese). doi: 10.3969/j.issn.1000-3096.2004.11.011
    [12] 吴子岳, 孙满昌, 汤威. 十字型人工鱼礁礁体的水动力计算[J]. 海洋水产研究, 2003, 24(4): 32-35.Wu Z Y, Sun M C, Tang W. The calculation of the hydrodynamic force of the artificial cross-reefs[J]. Marine Fisheries Research, 2003, 24(4): 32-35(in Chinese).
    [13] 隋吉盛, 郑中强, 常宗瑜, 等. 框架型人工鱼礁布放过程的动力学分析[J]. 渔业现代化, 2016, 43(3): 74-79. doi: 10.3969/j.issn.1007-9580.2016.03.014Sui J S, Zheng Z Q, Chang Z Y, et al. Dynamics analysis on the deployment of a frame-type artificial reef[J]. Fishery Modernization, 2016, 43(3): 74-79(in Chinese). doi: 10.3969/j.issn.1007-9580.2016.03.014
    [14] 许柳雄, 刘健, 张硕, 等. 回字型人工鱼礁礁体设计及其稳定性计算[J]. 武汉理工大学学报, 2010, 32(12): 79-83, 94. doi: 10.3963/j.issn.1671-4431.2010.12.019Xu L X, Liu J, Zhang S, et al. Research on the design and stability calculation of the artificial hui style reef[J]. Journal of Wuhan University of Technology, 2010, 32(12): 79-83, 94(in Chinese). doi: 10.3963/j.issn.1671-4431.2010.12.019
    [15] 杨运泽. 混凝土异形护面块体的现状及展望(续)[J]. 港工技术, 1996(3): 28-47.Yang Y Z. Situation and development of special shaped concrete armor blocks[J]. Port Engineering Technology, 1996(3): 28-47(in Chinese).
    [16] 沈天跃. 人工鱼礁投放误差评价方法研究[D]. 上海: 上海海洋大学, 2015.Shen T Y. Research on the evaluation method of delivery error of artificial reefs[D]. Shanghai: Shanghai Ocean University, 2015 (in Chinese).
    [17] Bohnsack J A, Sutherland D L. Artificial reef research: a review with recommendations for future priorities[J]. Bulletin of Marine Science, 1985, 37(1): 11-39.
    [18] Sherman R L, Gilliam D S, Spieler R E. Artificial reef design: void space, complexity, and attractants[J]. ICES Journal of Marine Science, 2002, 59(S1): S196-S200.
    [19] 赵海涛, 张亦飞, 郝春玲, 等. 人工鱼礁的投放区选址和礁体设计[J]. 海洋学研究, 2006, 24(4): 69-76. doi: 10.3969/j.issn.1001-909X.2006.04.008Zhao H T, Zhang Y F, Hao C L, et al. Sitting and designing of artificial reefs[J]. Journal of Marine Sciences, 2006, 24(4): 69-76(in Chinese). doi: 10.3969/j.issn.1001-909X.2006.04.008
    [20] 陶峰, 贾晓平, 陈丕茂, 等. 人工鱼礁礁体设计的研究进展[J]. 南方水产, 2008, 4(3): 64-69. doi: 10.3969/j.issn.2095-0780.2008.03.011Tao F, Jia X P, Chen P M, et al. Advance in the research on artificial reef design[J]. South China Fisheries Science, 2008, 4(3): 64-69(in Chinese). doi: 10.3969/j.issn.2095-0780.2008.03.011
    [21] Jan R Q, Liu Y H, Chen C Y, et al. Effects of pile size of artificial reefs on the standing stocks of fishes[J]. Fisheries Research, 2003, 63(3): 327-337. doi: 10.1016/S0165-7836(03)00081-X
    [22] Mellin C, Ponton D. Assemblages of reef fish settling on artificial substrates: effect of ambient habitat over two temporal scales[J]. Marine and Freshwater Research, 2010, 60(12): 1285-1297.
    [23] 尹增强,章守宇. 东海区资源保护型人工鱼礁生态效果评价体系的初步研究[J]. 海洋渔业, 2012, 34(1): 23-31.Yin Z Q, Zhang S Y. The ecological effect evaluation system of protective artificial reef in East China Sea[J]. Marine Fisheries, 2012, 34(1): 23-31(in Chinese).
    [24] 唐衍力, 王磊, 梁振林, 等. 方型人工鱼礁水动力性能试验研究[J]. 中国海洋大学学报(自然科学版), 2007(05): 713-716.Tang Y L, W L, Liang Z L, et al. Test of the hydrodynamic performance of square artificial reef[J]. Periodical of Ocean University of China(Natural Science Edition), 2007(05): 713-716(in Chinese).
    [25] 尹增强. 人工鱼礁效果评价理论与方法的研究[D]. 上海: 上海海洋大学, 2010.Yin Z Q. Study on the theory and method of effect evaluation of effect evaluation of the artificial reef[D]. Shanghai: Shanghai Ocean University, 2010 (in Chinese).
    [26] 林军, 章守宇. 人工鱼礁物理稳定性及其生态效应的研究进展[J]. 海洋渔业, 2006, 28(3): 257-262. doi: 10.3969/j.issn.1004-2490.2006.03.015Lin J, Zhang S Y. Research advances on physical stability and ecological effects of artificial reef[J]. Marine Fisheries, 2006, 28(3): 257-262(in Chinese). doi: 10.3969/j.issn.1004-2490.2006.03.015
    [27] 张硕, 孙满昌, 陈勇. 不同高度混凝土模型礁上升流特性的定量研究[J]. 大连水产学院学报, 2008, 23(5): 353-358. doi: 10.3969/j.issn.1000-9957.2008.05.006Zhang S, Sun M C, Chen Y. Quantitative analysis of upwelling current features of a artificial concrete reef with different height[J]. Journal of Dalian Fisheries University, 2008, 23(5): 353-358(in Chinese). doi: 10.3969/j.issn.1000-9957.2008.05.006
    [28] 李珺, 林军, 章守宇. 方形人工鱼礁通透性及其对礁体周围流场影响的数值实验[J]. 上海海洋大学学报, 2010, 19(6): 836-840.Li J, Lin J, Zhang S Y. The numerical experiment on the permeability of a cubic artificial reef and the effect on the flow field around the reef[J]. Journal of Shanghai Ocean University, 2010, 19(6): 836-840(in Chinese).
    [29] 杨红生, 章守宇, 张秀梅, 陈丕茂, 田涛, 张涛. 中国现代化海洋牧场建设的战略思考[J]. 水产学报, 2019, 43(04): 1255-1262.Yang H S, Zhang S Y, Zhang X M, Chen P M, et al. Strategic thinking on the construction of modern marine ranching in China[J]. Journal of Fisheries of China, 2019, 43(04): 1255-1262(in Chinese).
    [30] 杨林林, 姜亚洲, 程家骅. 中国海洋渔业水域环境研究现状及展望[J]. 生物学杂志, 2011, 28(01): 74-78,107. doi: 10.3969/j.issn.1008-9632.2011.01.074Yang L L, Jiang Y Z, Cheng J H. Status and prospects of the research on marine fishery waters environment in China[J]. Journal of Biology, 2011, 28(01): 74-78,107(in Chinese). doi: 10.3969/j.issn.1008-9632.2011.01.074
    [31] 王恩辰. 海洋牧场建设及其升级问题研究[D].中国海洋大学, 2015.Wang E C, Research on the construction and upgrade of marine ranching[D]. Ocean University of China, 2015 (in Chinese).
    [32] Zhou X J, Zhao X, Zhang S Y, et al. Marine ranching construction and management in East China Sea: programs for Sustainable fishery and aquaculture[J]. Water, 2019, 11(6): 1237. doi: 10.3390/w11061237
    [33] 章守宇, 周曦杰, 王凯, 等. 蓝色增长背景下的海洋生物生态城市化设想与海洋牧场建设关键技术研究综述[J]. 水产学报, 2019, 43(1): 81-96.Zhang S Y, Zhou X J, Wang K, et al. Review of marine livestock ecological urbanization hypothesis and marine ranching construction key-technology against blue growth background[J]. Journal of Fisheries of China, 2019, 43(1): 81-96(in Chinese).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article views(1133) PDF downloads(13) Cited by()

Proportional views

Static accumulation effect of two artificial reef monomer models

    Corresponding author: Jun LIN, jlin@shou.edu.cn
  • College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai    201306, China

Abstract: The trend of artificial reefs construction in China has following two aspects: using large-scale artificial reef construction project to enhance the ecological effect of hard substrate, and using offshore artificial reef construction to extend the stock enhancement function of hard substrate. Static accumulation experiment was conducted to analyse the stacking effect and performance of regular frame reef monomer and HUT reef monomer, which are commonly used for offshore reef pile construction in China. In view of the structure and shape of reef monomer, the index of coefficients, such as the volume growth rate, the volume ratio and stack slope angle of the two monomers (regular frame reef monomer vs. HUT reef monomer) models in the experiment were compared. Also, we compared the change of efficiency in different quantity between two monomers. The results showed that: ①using the same quantity monomer condition model, the volume growth rate of the regular frame reef monomer is higher than that of the HUT reef monomer, and the scale and bottom area of the artificial mound are relatively higher. regular frame reef: 7.799±0.057. This result demonstrated that regular frame reef monomer is more appropriate for artificial reef construction in slow current and shallow waters. While the volume ratio of the HUT monomer forming-mound structure is higher than that of the regular frame reef forming-mound structure. This result showed that HUT reef monomer forming mound is relatively taller and more permeable, which is more appropriate for offshore artificial reef construction project. ② From the perspective of the height contribution rate of two types of monomer mound, and the difference of the characteristics of the two monomers is fully demonstrated in our study. Specifically, to achieve effective physical effect of artificial reef mound, the minimum number of regular frame reef units is 28 while that of the HUT reef unit is 40.

  • 近年来,随着我国沿海张网渔业的渔场逐年外移、扩张,单位渔获产量不断下降[1],栖息地破坏与资源量下降的问题日益凸显。为修复海洋栖息地生态环境,我国海洋牧场建设的规模日益增加[2],建设海区逐渐向开阔的深水海域推进[3],人工鱼礁建设也向钢制化、大型化等方向发展[4]。在特定海域建设具有一定高度和规模的单位鱼礁,是人工鱼礁建设向深水区推进、拓展人工生境范围的有效解决方案[5]

    日本为满足在大陆架深处建设海洋牧场,在20世纪80年代开始以营造大规模上升流场的方式人工营造优质渔场[6]。利用煤灰粉压制技术制作了一种沉箱式鱼礁[7],并将大量的鱼礁单体在海底随机成堆[8]。经过海底地形事前调查、堆积状态预测、坐标位置确定、流速流向测定、投入位置诱导、投礁、人工鱼礁山脉成堆形态测量等步骤最终建设形成海底人工山脉[9]。日本的人工鱼礁山脉除了形成上升流、营造优质渔场外,在生物固碳、防止海水持续酸化等方面效果显著[10]

    21世纪以来,我国人工鱼礁建设使用的鱼礁单体一般以框架型鱼礁为主,包括方型鱼礁、回字型鱼礁、十字型鱼礁等;部分海域建设也使用了异性护面块体作为人工鱼礁投放[11-15]。在水泥构件礁实际施工中,尚无驳船直接脱底仓投放的实例。一般先将鱼礁单体统一在岸上浇筑制作完成,选取平潮海况时段由驳船载至投放海域,在同一点操控吊机牵引礁体放入水下,直至与其他单体或海床接触后即脱钩,使礁体自由堆放[16]。由于礁体类型、潮流等因素的影响,堆积效果往往差强人意。

    近岸开阔海域对于人工鱼礁单体结构设计要求与浅近海域、大陆架外延深海有所不同。对于浅近海域钢筋混凝土人工鱼礁的设计,Bohnsack等[17]认为需考虑增殖目标、海域环境状况、单体尺寸等多方要素。Sherman等[18]通过人工鱼礁区的调查经验,提出鱼礁单体的设计需要考虑其空方体积和内部结构复杂度等。赵海涛等[19]提出人工鱼礁单体设计应满足比表面积高、透空性和透水性良好等要求。王磊[4]利用空方体积比、单体表面积等参数对框架型鱼礁、箱型鱼礁、三角型鱼礁、梯形礁和异形体鱼礁等进行了优化和选型研究。陶峰等[20]认为人工鱼礁结构设计需要考虑流体力学、生物学和空间几何等因素。对于堆积型单位鱼礁建设而言,已有的研究表明,其整体规模、高度和内部复杂程度等是影响其流场效应和生态修复效应强弱的重要因素[21-22]。我国堆积型鱼礁布局虽早有建设案例[23],但国内外对专门用于堆积的人工鱼礁单体设计与选型研究尚处在起步阶段,对于如何提高堆积效果的研究较少。可依据已有对鱼礁单体设计要素的总结,建立专门用于堆积型鱼礁建设的鱼礁单体设计思路及其堆积效果评价因子。

1.   材料与方法
  • 选用2种实验礁型,其一为我国现有堆积型人工鱼礁建设中使用率较高的框架型鱼礁单体[24];其二为专为建造人工鱼礁山而设计的HUT型单体。依照这2种礁体结构,通过3D打印,将原单体按100∶1缩小,利用聚酯纤维材料(密度1.3 g/cm3)制作了边长为2.1 cm的礁体模型,并进行静态堆积实验(图1)。研究主要对比了2种礁型因结构设计不同,在堆积时互相堆叠、咬合状态的差异,以及最终形成堆积型单位人工鱼礁的体积、高度、占地面积与鱼礁单体使用量的关系。

    Figure 1.  Schematic diagram of frame type and HUT type reef monomer

  • 为描述2种礁体模型在堆积实验中的表现,设定了空方增长率、空方体积比、高度贡献率等评价因子。

  • 鱼礁模型投放成堆后,礁堆整体空方体积与礁体模型空方使用量的比值,鱼礁山整体的体积为包络礁堆的外接多面体的体积。礁体投放时单体之间相互穿插、相接导致总体体积的改变,是成堆实际空方体积与空方使用总体积产生差异的主因,其参数值反映了鱼礁单体建设堆积型单位鱼礁的空间变化率。

  • 鱼礁模型投放成堆后,礁堆整体空方体积与礁体模型总用料体积的比值[4]。空方体积比直观体现了建设相同空方数的礁堆需要投入的物料生产成本的高低,表现该种人工鱼礁单体进行堆积型单位鱼礁建设时的经济性。此外,利用该种鱼礁单体形成的礁堆空方体积比越高,其透水性越好,内部水流和营养盐的交换效率也越高[1822],且能够营造更复杂和多样化的细微生境结构,利于多种水生生物的生长[25-26]

  • 鱼礁模型投放时形成的礁堆高度与礁体使用单位数量的比值和礁体使用数量的关系。主要体现的是礁型在堆积形成鱼礁礁堆时,使用鱼礁单体数量对礁堆整体高度增长的贡献率。礁堆受海流时形成上升流的高度与礁堆堆积高度呈正相关[27],保证单位鱼礁的建设高度有利于投礁海域上下水层营养物质的交换。

  • 静态堆积实验主要利用鱼礁单体的物理模型模拟我国近海由驳船逐一吊放鱼礁单体建设礁堆的实际建设模式,在空气中模拟堆放。实验忽略实际建设过程中鱼礁山受水动力、底质承载力、礁体结构承载力以及其他作用力的影响。

  • 将两种鱼礁单体模型按每次堆积使用的单体数量进行分组,共分为20、40、60、80和100个数量单位,5个实验组,每个实验组重复模拟40次投放。实验主要记录每次单体模型成堆后,模型礁堆的高度H以及礁堆底投影面积S。为计算礁堆底面积,须在堆积步骤完成后,首先移除离礁堆主体1倍礁体边长距离以上的[28]单体模型,再标记礁堆外延模型单体的位置。采取礁堆数据时,先记录堆积高度H,随后撤去模型,连接各点,标示出底投影面。计算时将底投影面分割为多个小四边形,分别测量记录每个小四边形的底边长L与高h,分别累计得到底投影面积S

    计算堆积体积,在礁堆高度达到2层及以上时,近似的将礁堆包络的形状视为椎体,计算公式:$V = \dfrac{1}{3}SH$

    由此,空方增长率的计算公式为$E = \dfrac{V}{v}$;空方体积比的计算公式为$\varepsilon = \dfrac{V}{{\displaystyle\sum\limits_{n = 1}^n C }}$;高度贡献率$G = \dfrac{H}{n}$

    式中,S为礁堆底层各个部位的底投影面积之和,H为礁堆高,C为模型用料体积;v为单个鱼礁单体的包络体积;n为堆积使用人工鱼礁单体个数。为方便比较,在计算结果时先将所得数据单位化。

    计算得出各实验组的空方增长率、空方体积比、坡度角等参数值。利用SPSS等软件,首先验证在有限实验重复次数的前提下,利用K-S检验验证2种不同礁型实验组数据的正态分布特性;随后利用回归性分析比对以上2个参数对应单体类型的用量或用料的相关性和相关度;再利用One-Way ANOVA在95%置信度水平下的单因素方差分析比对2种礁型各实验组参数间的差异性(P<0.05为具显著性),最后利用均值比对法比较和讨论2种礁堆模型空方增长率和空方体积的差异。

2.   结果
  • 数据处理发现,由于空方增长率、空方体积比参数在计算时,变量均取决于空方体积随单体用量增加而带来的改变,所以在统计检验时,同一种礁型的这2个参数的显著性与正态分布特征具有一致性。

    在正态分布检验阶段,除框架型单体20个单位的实验组空方增长率与空方体积比数据结果分布都不符合正态分布外(P=0.009<0.05),其余实验组数据均呈正态分布。

    检验各实验组空方增长率、空方体积比数据的回归性发现,框架型单体模型实验组中,空方增长率与礁体用量无显著相关性(框架型20~100:R=0.008 5、P>0.05;40~100:R=0.001 8、P>0.05);对HUT型鱼礁山模型的分析发现,空方增长率、空方体积比与礁体用量仅具有微弱的相关性(20~100:R=0.051 5、P=0.001 2),去除礁体单位用量为20的实验组后,发现该种堆积模型两参数与礁体用量均不显示相关性(40~100:R<<0.01、P=0.922 5>0.05)。2种礁型各组间空方增长率的分布如图2所示,空方体积比的分布如图3所示。

    Figure 2.  Distribution of the volume growth rate of each experimental group of frame type and HUT type reef

    Figure 3.  Distribution of the volume ratio of each experimental group of frame type and HUT type reef

    对两种礁型的不同实验组空方增长率、空方体积比之间进行显著性比较得出,框架型各组之间两参数数据不具有显著性差异(20~100:P=0.169 4>0.05);HUT型除去礁体单位用量为20的组次后,40、60、80和100组次之间的空方增长率、空方体积比不具有显著性(20~100:P<<0.05;40~100:P=0.357 2>0.05)。

  • 框架型、HUT型单体模型实验形成礁堆的高度增长率与礁体用量拟合得出,框架型增高效率为y=2.225 0x−0.675 0R2=0.842 5;HUT型增高效率为y=1.957 8x−0.683 0R2=0.916 6。由图4可知,同种礁体模型随单体用量的增加而逐渐降低,相同单体使用量下,HUT型单体模型相比框架型具有更高的高度贡献率。

    Figure 4.  Relationship between growth efficiency of frame type and HUT type reef and number of monomer

  • 除了空方体积比、空方增长率和高度增长率外,礁堆模型的高度与底面积的分布关系也是建设堆积型单位鱼礁具体施工时需要考虑的因素。

    框架型模型单体形成礁堆高度与底面积关系为y=0.654 2x0.367 3R2=0.423 6;HUT型模型形成礁堆高度与底面积关系为y=0.873 0x0.362 8R2=0.620 1(图5)。

    Figure 5.  Relationship between the unit bottom area and unit height of the model of the reef pile formed by the frame type and the HUT type reef

    静态模型实验呈现的礁堆模型高度与底面积的关系可以一定程度反映实际建设堆积型单位鱼礁时,礁堆高度和底部覆盖面积的关系。

3.   讨论
  • 实验数据分析时,单位用量为20的实验组形成的礁堆特征不明显,导致在实验中需要去除该组数据后才能继续分析相应鱼礁单体的成堆特征,故推荐在堆积型单位鱼礁建设时,堆积的人工鱼礁单位数不应低于20。

    40~100实验组,空方增长率与空方体积比分布如图6所示,表明当礁体模型使用量超过40时,可以将空方增长率与空方体积比作为描述该种礁型堆积效率的属性参数。模型使用量在40个单位以上时,HUT型单体空方体积比取值均值为9.783±0.039,优于框架型单体模型的7.799±0.057 (P<<0.001);框架型的空方增长率均值为1.728±0.057,优于HUT型单体模型的1.512±0.044 (P<<0.001)(图6)。

    Figure 6.  Distribution of the volume ratio and volume growth rate of frame type and HUT type reef model

  • 将2礁型高度贡献率、礁堆单位高度与模型用量的关系拟合曲线后,2交点如图7所示。框架型礁体曲线交点横坐标为28个单位左右,HUT型礁体曲线交点横坐标为40个单位左右。

    Figure 7.  Optimal dosage of monomer under the influence of stacking height contribution rate

    2种礁型高度贡献率均随投放量增加而下降;高度则缓慢上升,且上升幅度随单体投放量增加而减小。框架型单体在礁体投放数量超过约28个单位后,礁堆高度增长速率开始进入相对缓慢的增长区间;HUT型单体则需要在投放量达到40个单位后才出现此情况。由于海况条件和各项受力影响,使用框架型和HUT型鱼礁单体堆积建设礁堆时,高度增长开始放缓的实际投放量可能超过此理论值。

4.   结论
  • 海洋是人类获取蛋白质的“蓝色粮仓”[29],海洋渔业是国家粮食安全保障的重要组成部分[30],我国近海渔业资源的状态关系到国计民生[31]。利用人工鱼礁单体堆积成大型单位鱼礁甚至人工鱼礁山脉,以提高海洋牧场综合养护效率,是一项行之有效的建设方案[5-6]

    本实验主要以人工鱼礁物理模型类比实际礁体,对框架型、HUT型人工鱼礁单体模型开展静态堆积实验,在单体使用量100个的范围内研究了2种鱼礁单体在建设堆积型单位鱼礁工程时体现的各项参数和关系。研究表明:

    ①框架型模型单体堆积形成礁堆的空方增长率(1.728±0.057)高于HUT型单体模型(1.512±0.044);单体空方用量相同时,使用框架型鱼礁单体建设形成礁堆的规模[32-33]和底面积相对较大,适用于海流较缓、水深较浅的海域。

    HUT型单体模型的空方体积比(9.783±0.039)高于框架型单体模型(7.799±0.057);利用HUT型作为建设单体建设相同空方体积的礁堆时,形成的礁堆整体具备更好的透空性和透水性[42028],同时形成礁堆形态较为高耸,实际建设堆积型单位鱼礁时适用于海流较为湍急、水深较深的海域。

    ②从单体对单位鱼礁高度的贡献率角度考量,同时使得2种单体特性的差异充分展现,建议使用框架型单体进行单位鱼礁建设,堆积数量应超过28个,选用HUT型鱼礁单体时,堆积数量则应超过40个。

    本研究结果在一定程度上可为实际运用HUT型、框架型人工鱼礁单体建设堆积型单位鱼礁的规划和施工提供参考。

Reference (33)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return