• ISSN 1000-0615
  • CN 31-1283/S
Volume 43 Issue 9
Sep.  2019
Article Contents
Turn off MathJax

Citation:

Present situation and future development of marine ranching construction in China

  • Corresponding author: Xiujuan SHAN, shanxj@ysfri.ac.cn
  • Received Date: 2019-03-18
    Accepted Date: 2019-07-29
  • This paper reviews the marine ranching researches in China since its construction, including introduction of the background and necessity of marine ranching construction in China, and summarizes research process, research content and current basic state of the marine ranching in China. At the same time, we reviewed the research content and development process of marine ranching in foreign countries, especially summarized the research experience of marine ranching in Japan. From their research on marine ranching, researchers of foreign countries concluded that the ultimate goal of marine ranching construction was to restore its natural ecosystem. The current researches of marine ranching in China were focused on their own construction of marine ranching and the population restoration of the enhancement and releasing species. Although there were some researches about the ecological system of marine ranching in China, most of them stayed in the primary research stage, without depth and accuracy. Many research parameters of these researches were introduced from the results of other research works, with no consideration of the differences between natural and artificial sea areas, and the regional differences among marine ranching. The future focus of research work about marine ranching in China should be concentrated on the food web and energy flow of marine ranching’s ecosystem, in order to promote the production of marine ranching, and to provide a scientific basis for the study of natural nutrient channels between artificial reef areas and surrounding waters for ecosystem construction.
  • 加载中
  • [1] Grimes C B. Marine stock enhancement: Sound management or techno-arrogance[J]. Fisheries, 1998, 23(9): 18-23. doi: 10.1577/1548-8446(1998)023<0018:MSE>2.0.CO;2
    [2] FAO. The state of world fisheries and aquaculture[R]. Rome: FAO, 2009: 323-339.
    [3] 《中国渔业区划》编写组. 中国渔业区划[M]. 杭州: 浙江科学技术出版社, 1988: 59-61.Writing Group of "China Fisheries Zoning". China fishery divisions[M]. Hangzhou: Zhejiang Science Press, 1988: 59-61 (in Chinese).
    [4] Lorenzen K. Understanding and managing enhancement fisheries systems[J]. Reviews in Fisheries Science, 2008, 16(1-3): 10-23. doi: 10.1080/10641260701790291
    [5] 刘卓, 杨纪明. 日本海洋牧场(Marine Ranching)研究现状及其进展[J]. 现代渔业信息, 1995, 10(5): 14-18.Liu Z, Yang J M. The status and progress of marine ranching research in Japan[J]. Modern Fisheries Information, 1995, 10(5): 14-18(in Chinese).
    [6] 朱树屏. 朱树屏文集[M]. 北京: 海洋出版社, 2007: 10-20.Zhu S P. Collected works of S.P. Zhu[M]. Beijing: Marine Press, 2007: 10-20 (in Chinese).
    [7] 曾呈奎. 关于我国专属经济海区水产生产农牧化的一些问题[J]. 自然资源, 1979(1): 58-64.Zeng C G. Questions about marine ranching in the exclusive economic area of China[J]. Natural Resources, 1979(1): 58-64(in Chinese).
    [8] 杨红生. 我国海洋牧场建设回顾与展望[J]. 水产学报, 2016, 40(7): 1133-1140.Yang H S. Construction of marine ranching in China: Reviews and prospects[J]. Journal of fisheries of China, 2016, 40(7): 1133-1140(in Chinese).
    [9] Salvanes AGV. Ocean ranching[M]//Steele J H. Encyclopedia of ocean sciences. 2nd ed. San Diego: Academic Press, 2001: 146-155.
    [10] Seaman W, Lindberg W J. Artificial reefs[M]//Steele J H. Encyclopedia of ocean sciences. 3rd ed. San Diego: Academic Press, 2019: 226-233.
    [11] 唐启升. 科学认识渔业资源增殖、海洋牧场、增殖渔业内涵及其发展定位, 采取精准措施保障海洋牧场建设持续健康发展[EB/OL]. (2019-04-03). http://www.ysfri.ac.cn/info/1115/32115.htm.Tang Q S. Scientific understanding on the connotation and development orientation of fishery resources enhancement, marine ranching and enhancement fishery, and the precise measures to ensure the sustainable and healthy development of marine ranching construction[EB/OL]. (2019-04-03). http://www.ysfri.ac.cn/info/1115/32115.htm (in Chinese).
    [12] 国务院. 中国水生生物资源养护行动纲要[EB/OL]. (2006-02-14). http://www.gov.cn/zwgk/2006-02/27/content_212335.htm.The State Council, PRC. Outline of action for aquatic biological resources conservation in China[EB/OL]. (2006-02-14). http://www.gov.cn/zwgk/2006-02/27/content_212335.htm (in Chinese).
    [13] 杨红生. 海洋牧场构建原理与实践[M]. 北京: 科学出版社, 2017: 1-11.Yang H S. Principle and practice of marine ranching[M]. Beijing: Science Press, 2017: 1-11 (in Chinese).
    [14] 贾后磊, 谢健, 彭昆仑. 人工鱼礁选址合理性分析[J]. 海洋开发与管理, 2009, 26(4): 72-75. doi: 10.3969/j.issn.1005-9857.2009.04.016Jia H L, Xie J, Peng K L. Reasonable analysis on the artificial reef site location[J]. Ocean Development and Management, 2009, 26(4): 72-75(in Chinese). doi: 10.3969/j.issn.1005-9857.2009.04.016
    [15] 柴召阳, 霍元子, 于克锋, 等. 枸杞岛瓦氏马尾藻藻场生态系统健康评价[J]. 海洋环境科学, 2013, 32(3): 386-389.Cai Z Y, Huo Y Z, Yu K F, et al. Assessment of Sargassum vachellianum bed ecosystem health in Gouqi Island[J]. Marine Environmental Science, 2013, 32(3): 386-389(in Chinese).
    [16] 彭璇, 马胜伟, 陈海刚, 等. 粤柘林东湾-南澳岛海洋牧场的海水营养状况及其等级评价[J]. 广东农业科学, 2014, 41(19): 135-141. doi: 10.3969/j.issn.1004-874X.2014.19.031Peng X, Ma S W, Chen H G, et al. Nutrient status and grade evaluation of seawater in Zhelin Bay-Nanao Island marine ranching[J]. Guangdong Agricultural Sciences, 2014, 41(19): 135-141(in Chinese). doi: 10.3969/j.issn.1004-874X.2014.19.031
    [17] 田涛, 陈勇, 陈辰, 等. 獐子岛海洋牧场海域人工鱼礁区投礁前的生态环境调查与评估[J]. 大连海洋大学学报, 2014, 29(1): 75-81.Tian T, Chen Y, Chen C, et al. The survey and assessment of ecological environment in marine ranching area at coastal Zhangzi Island where an artificial reef will be disposed[J]. Journal of Dalian Fisheries University, 2014, 29(1): 75-81(in Chinese).
    [18] 罗昆, 李亮, 龙根元, 等. 海南岛南部海域沉积物重金属污染及潜在生态风险评价[J]. 上海海洋大学学报, 2017, 26(1): 85-93. doi: 10.12024/jsou.20160701831Luo K, Li L, Long G Y, et al. Heavy metal pollution and their ecological risk assessment in sediments from southern Hainan Island[J]. Journal of Shanghai Ocean University, 2017, 26(1): 85-93(in Chinese). doi: 10.12024/jsou.20160701831
    [19] 黄梓荣, 梁小芸, 曾嘉. 人工鱼礁材料生物附着效果的初步研究[J]. 南方水产, 2006, 2(1): 34-38. doi: 10.3969/j.issn.2095-0780.2006.01.007Huang Z R, Liang X Y, Zeng J. Preliminary study on effects of accrete organisms of artificial reef material[J]. South China Fisheries Science, 2006, 2(1): 34-38(in Chinese). doi: 10.3969/j.issn.2095-0780.2006.01.007
    [20] 陈勇, 田涛, 倪文, 等. 凝石胶凝材料作为人工鱼礁材料的可行性研究I——凝石供试体的抗压强度、浸泡海水的pH及其与水泥供试体的比较[J]. 大连海洋大学学报, 2012, 27(3): 269-273. doi: 10.3969/j.issn.1000-9957.2012.03.016Chen Y, Tian T, Ni W, et al. The feasibility of congealing stone used as artificial reef materials Ⅰ—compressive strength, and pH in immersed seawater reference to cement[J]. Journal of Dalian Fisheries University, 2012, 27(3): 269-273(in Chinese). doi: 10.3969/j.issn.1000-9957.2012.03.016
    [21] 王莲莲, 陈丕茂, 陈勇, 等. 贝壳礁构建和生态效应研究进展[J]. 大连海洋大学学报, 2015, 30(4): 449-454.Wang L L, Chen P M, Chen Y, et al. A review: Research progress of construction and ecological effect of artificial shell reefs[J]. Journal of Dalian Fisheries University, 2015, 30(4): 449-454(in Chinese).
    [22] 王宏, 戴媛媛, 高燕, 等. 人工鱼礁在自然海水条件下的腐蚀寿命研究[J]. 海洋湖沼通报, 2018(2): 118-124.Wang H, Dai Y Y, Gao Y, et al. Concrete corrosion life of artificial reefs in the natural seawater[J]. Transactions of Oceanology and Limnology, 2018(2): 118-124(in Chinese).
    [23] 董天威. 日照前三岛人工鱼礁渔业资源增殖效果初步评价[D]. 青岛: 中国海洋大学, 2015: 4-8.Dong T W. Preliminary evaluation of artificial reef around Rizhao Qiansan Island on the enhancement of fishery resources[D]. Qingdao: Ocean University of China, 2015: 4-8 (in Chinese).
    [24] 吴子岳, 孙满昌, 汤威. 十字型人工鱼礁礁体的水动力计算[J]. 海洋水产研究, 2003, 24(4): 32-35.Wu Z Y, Sun M C, Tang W. The calculation of the hydrodynamic force of the artificial cross-reefs[J]. Marine Fisheries Research, 2003, 24(4): 32-35(in Chinese).
    [25] 贺亮, 刘丽, 廖健, 等. 圆台型混凝土人工藻礁礁体结构设计及其稳定性分析[J]. 广东海洋大学学报, 2016, 36(3): 74-80.He L, Liu L, Liao J, et al. Structure design and stability analysis of frustum-shaped artificial reef[J]. Journal of Guangdong Ocean University, 2016, 36(3): 74-80(in Chinese).
    [26] 唐衍力, 龙翔宇, 王欣欣, 等. 中国常用人工鱼礁流场效应的比较分析[J]. 农业工程学报, 2017, 33(8): 97-103. doi: 10.11975/j.issn.1002-6819.2017.08.013Tang Y L, Long X Y, Wang X X, et al. Comparative analysis on flow field effect of general artificial reefs in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(8): 97-103(in Chinese). doi: 10.11975/j.issn.1002-6819.2017.08.013
    [27] 陈小艳, 谢琳, 王发云. 三亚湾海洋牧场人工鱼礁结构设计及稳定性分析[J]. 海洋科学, 2017, 41(10): 19-23.Chen X L, Xie L, Wang F Y. Structure design and stability analysis of the artificial reef in marine ranching of Sanya Bay[J]. Marine Sciences, 2017, 41(10): 19-23(in Chinese).
    [28] 张硕, 孙满昌, 陈勇. 人工鱼礁模型对大泷六线鱼和许氏平鲉幼鱼个体的诱集效果[J]. 大连水产学院学报, 2008, 23(1): 13-19. doi: 10.3969/j.issn.1000-9957.2008.01.003Zhang S, Sun M C, Chen Y. The attractive effects of different structural artificial reef models on juvenile Schlegel's rockfish Sebastes schlegeli and fat greenling Hexagrammos otakii[J]. Journal of Dalian Fisheries University, 2008, 23(1): 13-19(in Chinese). doi: 10.3969/j.issn.1000-9957.2008.01.003
    [29] 江艳娥, 陈丕茂, 林昭进, 等. 不同材料人工鱼礁生物诱集效果的比较[J]. 应用海洋学学报, 2013, 32(3): 418-424. doi: 10.3969/J.ISSN.2095-4972.2013.03.016Jiang Y E, Chen P M, Lin Z J, et al. Comparison of effectiveness of various artificial reef materials for fish attraction[J]. Journal of Applied Oceanography, 2013, 32(3): 418-424(in Chinese). doi: 10.3969/J.ISSN.2095-4972.2013.03.016
    [30] 张磊, 郝振林, 张秀梅. 不同模型礁底栖藻类附着效果的初步研究[J]. 南方水产科学, 2011, 7(2): 1-7. doi: 10.3969/j.issn.2095-0780.2011.02.001Zhang L, Hao Z L, Zhang X M. Preliminary study on attaching effect of benthic algae on different reef models[J]. South China Fisheries Science, 2011, 7(2): 1-7(in Chinese). doi: 10.3969/j.issn.2095-0780.2011.02.001
    [31] 姜少杰, 刘海敌, 吴伟, 等. 一种人工鱼礁的水动力学研究与建设效果评价[J]. 海洋学研究, 2017, 35(2): 53-60. doi: 10.3969/j.issn.1001-909X.2017.02.006Jiang S J, Liu H D, Wu W, et al. Study on hydrodynamics and effect evaluation for constructing of an artificial reef[J]. Journal of Marine Sciences, 2017, 35(2): 53-60(in Chinese). doi: 10.3969/j.issn.1001-909X.2017.02.006
    [32] 张怀慧, 孙龙. 利用人工鱼礁工程增殖海洋水产资源的研究[J]. 资源科学, 2001, 23(5): 6-10. doi: 10.3321/j.issn:1007-7588.2001.05.002Zhang H H, Sun L. On reproduction increase of the sea aquatic resources by artificial fish-reef engineering[J]. Resources Science, 2001, 23(5): 6-10(in Chinese). doi: 10.3321/j.issn:1007-7588.2001.05.002
    [33] 史红卫. 正方体人工鱼礁模型试验与礁体设计[D]. 青岛: 中国海洋大学, 2006: 26-30.Shi H W. Experiment of cubic model of artificial reef and reef design[D]. Qingdao: Ocean University of China, 2006: 26-30 (in Chinese).
    [34] 虞聪达, 俞存根, 严世强. 人工船礁铺设模式优选方法研究[J]. 海洋与湖沼, 2004, 35(4): 299-305. doi: 10.3321/j.issn:0029-814X.2004.04.002Yu C D, Yu C G, Yan S Q. Hydrodynamic simulation to the best layout of artificial ship-reefs[J]. Oceanologia et Limnologia Sinica, 2004, 35(4): 299-305(in Chinese). doi: 10.3321/j.issn:0029-814X.2004.04.002
    [35] 俞存根. 一种组合式藻礁群: 中国, CN104429900A[P]. 2016-08-31.Yu C G. The group combination of algal reef: China, CN104429900A[P]. 2016-08-31 (in Chinese).
    [36] 赵文溪, 刘泳, 王其翔, 等. 一种组合式人工藻礁: 中国, CN203985413U[P]. 2014-12-10.Zhao W X, Liu Y, Wang Q X, et al. The group combination of algal reef: China, CN203985413U[P]. 2014-12-10 (in Chinese).
    [37] 王铁杆, 周化斌, 张永普, 等. 岩相潮间带大型底栖生物多样性对铜藻藻场的响应[J]. 上海海洋大学学报, 2015, 24(3): 403-413.Wang T G, Zhou H B, Zhang Y P, et al. Response of macrobenthos diversity to seaweed bed of Sargassum horneri in the rocky intertidal zone of Nanji Islands[J]. Journal of Shanghai Ocean University, 2015, 24(3): 403-413(in Chinese).
    [38] 章守宇, 张焕君, 焦俊鹏, 等. 海州湾人工鱼礁海域生态环境的变化[J]. 水产学报, 2006, 30(4): 475-480.Zhang S Y, Zhang H J, Jiao J P, et al. Change of ecological environment of artificial reef waters in Haizhou Bay[J]. Journal of Fisheries of China, 2006, 30(4): 475-480(in Chinese).
    [39] 焦金菊, 潘永玺, 孙利元, 等. 人工鱼礁区的增殖鱼类资源效果初步研究[J]. 水产科学, 2011, 30(2): 79-82. doi: 10.3969/j.issn.1003-1111.2011.02.004Jiao J J, Pan Y X, Sun L Y, et al. Effect of artificial reefs on fish multiplication[J]. Fisheries Science, 2011, 30(2): 79-82(in Chinese). doi: 10.3969/j.issn.1003-1111.2011.02.004
    [40] 王伟定, 梁君, 章守宇. 人工鱼礁建设对浙江嵊泗海域营养盐与水质的影响[J]. 水生生物学报, 2010, 34(1): 78-87.Wang W D, Liang J, Zhang S Y. Influence of artificial reef construction on nutrition and water quality in off-shore area of Shengsi, Zhejiang[J]. Acta Hydrobiologica Sinica, 2010, 34(1): 78-87(in Chinese).
    [41] 吴立珍, 吴卫强, 陆伟, 等. 海州湾生态环境修复的探索实践与展望——江苏省海洋牧场示范区建设[J]. 中国水产, 2012(6): 35-37. doi: 10.3969/j.issn.1002-6681.2012.06.011Wu L Z, Wu W Q, Lu W, et al. Exploration practice and Prospect of ecological environment restoration in Haizhou Bay -- demonstration area construction of marine ranching in Jiangsu Province[J]. China Fisheries, 2012(6): 35-37. doi: 10.3969/j.issn.1002-6681.2012.06.011
    [42] 陈丕茂, 袁华荣, 贾晓平, 等. 大亚湾杨梅坑人工鱼礁区渔业资源变动初步研究[J]. 南方水产科学, 2013, 9(5): 100-108.Chen P M, Yuan R H, Jia X P, et al. Changes in fishery resources of Yangmeikeng artificial reef area in Daya Bay[J]. South China Fisheries Science, 2013, 9(5): 100-108(in Chinese).
    [43] 杜秀宁, 王云龙. 象山港特定海域浮游动物生物量和物种年际及季节变化[J]. 海洋通报, 2014, 33(3): 293-298. doi: 10.11840/j.issn.1001-6392.2014.03.007Du X L, Wang Y L. Inter-annual and seasonal changes of zooplankton biomass and species in the specific region of the Xiangshan Bay[J]. Marine Science Bulletin, 2014, 33(3): 293-298(in Chinese). doi: 10.11840/j.issn.1001-6392.2014.03.007
    [44] 李洋, 王小兵, 黄渤, 等. 陵水新村湾海草场大型底栖生物多样性分析[J]. 热带生物学报, 2015, 6(4): 381-387.Li Y, Wang X B, Huang B, et al. Observation of macrobenthos in seagrass meadows in the Xincun Bay, Lingshui, Hainan, China[J]. Journal of Tropical Biology, 2015, 6(4): 381-387(in Chinese).
    [45] 刘鸿雁, 吕洪斌, 张沛东, 等. 人工鱼礁模型和大型海藻对许氏平鲉和大泷六线鱼幼鱼的诱集作用[J]. 水产学报, 2018, 42(1): 48-59.Liu H Y, Lü H B, Zhang P D, et al. Attraction effect of artificial reef model and macroalgae on juvenile Sebastes schlegelii and Hexagrammos otakii[J]. Journal of Fisheries of China, 2018, 42(1): 48-59(in Chinese).
    [46] 陈德慧, 刘洪生, 胡庆松, 等. 网箱中黑鲷音响驯化的诱集效果探究[J]. 上海海洋大学学报, 2012, 21(4): 554-560.Chen D H, Liu H S, Hu Q S, et al. Attractive effect of acoustic taming on Sparus macrocephalus in a cage[J]. Journal of Shanghai Ocean University, 2012, 21(4): 554-560(in Chinese).
    [47] 沈卫星, 胡庆松, 申屠基康, 等. 海洋牧场智能化浮式聚鱼装备研发与现场试验[J]. 上海海洋大学学报, 2016, 25(2): 314-320.Shen W X, Hu Q S, Shentu J K, et al. Research and experiment of intelligent floating fish accumulating equipment for ocean ranching[J]. Journal of Shanghai Ocean University, 2016, 25(2): 314-320(in Chinese).
    [48] 杨军, 刘永虎, 田涛, 等. 模拟海底水流和光照条件下光棘球海胆行为特征及其聚礁效果的初步研究[J]. 大连海洋大学学报, 2016, 31(2): 219-224.Yang J, Liu Y H, Tian T, et al. Behavior and aggregation of sea urchin Strongylocentrotus nudus to reefs under the simulated water current and illumination at seafloor[J]. Journal of Dalian Fisheries University, 2016, 31(2): 219-224(in Chinese).
    [49] 小川良德, 竹村嘉夫. 人工鱼礁に对する鱼群行动の试验的研究Ⅰ-Ⅵ[J]. 东海水研报, 1966(45): 107-161.Ogawa ryodo, Takemura Yoshio. Studies on the experiment of the movement of the fish group around the artificial reefⅠ-Ⅵ[J]. East sea fisheries research journal, 1966(45): 107-161.
    [50] 小川良德. 人工魚礁と魚付き: 人工魚礁とその効果[J]. 水产増殖臨号, 1968(7): 1-21.Ogawa ryodo. Artificial reef and appendiculate fishes: Artificial reef and its effect[J]. fishery genesiology, 1968(7): 1-21.
    [51] 岗本峰雄, 黑木敏郎, 村井徹. 人工魚礁近傍の魚群生態に関する予備的研究-猿岛北方魚礁群の概要[J]. 日本水産学会誌, 1979, 45: 709-713.Kajimoto Mineo, Haseki Toshiro, Murai Toru. A preliminary study on the fish ecology in the vicinity of artificial reefs: an outline of the artificial reef group in the northern part of Sarushima island[J]. Japanese Fisheries Research, 1979, 45: 709-713.
    [52] Santelices B. A conceptual framework for marine agronomy[J]. Hydrobiologia, 1999, 398-399: 15-23.
    [53] Woodhead P M J, Jacobson M E. Biological colonization of coal-waste artificial reef[J]. Wastes in the Ocean, 1985: 597-612.
    [54] Kim J Q, Mizutani N, Iwata K. Experimental study on the local scour and embedment of fish reef by wave action in shallow water depth[R]. Tokyo: Proceedings, International Conference on Ecological System Enhancement for Aquatic Enviroments. Japan International Marine Science and Technology Federation, 1995: 168-173.
    [55] Fujihara M, Kawachi T, Oohashi G. Physical-biological coupled modelling for artificially generated upwelling[C]. Paper of Society of Civil Engineers, 1997: 189.
    [56] Vose F E, Nelson N G. An assessment of the use of stabilized coal and oil ash for construction of artificial fishing reefs: comparison of fishes observed on small ash and concrete reefs[J]. Marine Pollution Bulletin, 1998, 36(12): 980-988. doi: 10.1016/S0025-326X(98)00098-8
    [57] Kim C G, Suh S H, Cho J K, et al. Optimum structure and deployment of an abalone reef for the marine ranching creation in Jeonnam archipelago of Korea[J]. Journal of the Korean Society of Marine Engineering, 2007, 31(8): 1005-1012. doi: 10.5916/jkosme.2007.31.8.1005
    [58] Yoon B S, Park J H, Yoon S C, et al. Seasonal variations in the species composition of fisheries resources caught by trammel net in the Uljin marine ranching area, East Sea[J]. Korean Journal of Fisheries and Aquatic Sciences, 2015, 48(6): 947-959. doi: 10.5657/KFAS.2015.0947
    [59] Ziemann D A. The potential for the restoration of marine ornamental fish populations through hatchery releases[J]. Aquarium Sciences and Conservation, 2001, 3(1-3): 107-117.
    [60] Jackson J B C, Kirby M X, Berger W H, et al. Historical overfishing and the recent collapse of coastal ecosystems[J]. Science, 2001, 293(5530): 629-637. doi: 10.1126/science.1059199
    [61] Bakun A. Wasp-waist populations and marine ecosystem dynamics: Navigating the "predator pit" topographies[J]. Progress in Oceanography, 2006, 68(2-4): 271-288. doi: 10.1016/j.pocean.2006.02.004
    [62] Mustafa S. Stock enhancement and sea ranching: Objectives and potential[J]. Reviews in Fish Biology and Fisheries, 2003, 13(2): 141-149. doi: 10.1023/B:RFBF.0000019476.87730.3b
    [63] Loneragan N R, Jenkins G I, Taylor M D. Marine stock enhancement, restocking, and sea ranching in Australia: Future directions and a synthesis of two decades of research and development[J]. Reviews in Fisheries Science, 2013, 21(3-4): 222-236. doi: 10.1080/10641262.2013.796810
    [64] Tanaka T, Ota Y. Reviving the Seto Inland Sea, Japan: Applying the principles of Satoumi for marine ranching project in Okayama[M]//Ceccaldi H J, Hénocque Y, Koike Y, et al. Marine productivity: perturbations and resilience of socio-ecosystems. Cham: Springer, 2015: 291-294.
    [65] Taylor M D, Chick R C, Lorenzen K, et al. Fisheries enhancement and restoration in a changing world[J]. Fisheries Research, 2017, 186: 407-412. doi: 10.1016/j.fishres.2016.10.004
    [66] Lee M O, Otake S, Kim J K. Transition of artificial reefs (ARs) research and its prospects[J]. Ocean & Coastal Management, 2018, 154: 55-65.
    [67] Lee S G, Midani R A. National comprehensive approaches for rebuilding fisheries in South Korea[J]. Marine policy, 2014, 45: 156-162. doi: 10.1016/j.marpol.2013.12.010
    [68] Lee S I, Zhang C I. Evaluation of the effect of marine ranching activities on the Tongyeong marine ecosystem[J]. Ocean Science Journal, 2018, 53(3): 557-582. doi: 10.1007/s12601-018-0045-8
    [69] Yang H Y. Bio-environmental characteristics of the Uljin marine ranching area (UMRA), East Sea of Korea. 1. Spatio-temporal distributions of phytoplankton community[J]. Journal of the Korean Society for Marine Environment and Energy, 2016, 19(1): 37-46. doi: 10.7846/JKOSMEE.2016.19.1.37
    [70] 小岩信竹. 栽培漁業50年の足跡―豊饒の海へ[J]. 漁業経済研究, 2014, 58(2): 39-43.Koiwa Nobutake. Fifty years of cultivation Fisheries-In the fertile Sea[J]. Fisheries Economics Research, 2014, 58(2): 39-43.
    [71] Tanaka T, Ota Y. Reviving the Seto Inland Sea, Japan: Applying the principles of Satoumi for marine ranching project in Okayama[C]//Proceedings of the 15th French-Japanese Oceanography Symposium. Tokyo: Springer, 2015: 291-294.
    [72] Folke C. Energy economy of salmon aquaculture in the Baltic Sea[J]. Environmental Management, 1988, 12(4): 525-537. doi: 10.1007/BF01873265
    [73] Pitcher T J, Buchary E A, Hutton T. Forecasting the benefits of no-take human-made reefs using spatial ecosystem simulation[J]. ICES Journal of Marine Science, 2002, 59(S1): S17-S26.
    [74] Heithaus M R, Vaudo J J, Kreicker S, et al. Apparent resource partitioning and trophic structure of large-bodied marine predators in a relatively pristine seagrass ecosystem[J]. Marine Ecology Progress Series, 2013, 481: 225-237. doi: 10.3354/meps10235
    [75] Yang H Y. Spatio-temporal variability and size fractionation of chlorophyll a in the Jeju Marine Ranching Area(JMRA) with special reference to the signification of nanoplankton[J]. Journal of the Korea Academia-Industrial cooperation Society, 2014, 15(10): 6388-6398. doi: 10.5762/KAIS.2014.15.10.6388
    [76] 魏虎进, 朱小明, 纪雅宁, 等. 基于稳定同位素技术的象山港海洋牧场区食物网基础与营养级的研究[J]. 应用海洋学学报, 2013, 32(2): 250-257. doi: 10.3969/J.ISSN.2095-4972.2013.02.015Wei H J, Zhu X M, Ji Y N, et al. Study on the food web structure and their trophic levels of marine ranching area in Xiangshan Harbor[J]. Journal of Applied Oceanography, 2013, 32(2): 250-257(in Chinese). doi: 10.3969/J.ISSN.2095-4972.2013.02.015
    [77] 谢斌, 李云凯, 张虎, 等. 基于稳定同位素技术的海州湾海洋牧场食物网基础及营养结构的季节性变化[J]. 应用生态学报, 2017, 28(7): 2292-2298.Xie B, Li Y K, Zhang H, et al. Food web foundation and seasonal variation of trophic structure based on the stable isotopic technique in the marine ranching of Haizhou Bay, China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2292-2298(in Chinese).
    [78] 林会洁, 秦传新, 黎小国, 等. 柘林湾海洋牧场不同功能区食物网结构[J]. 水产学报, 2018, 42(7): 1026-1039.Lin H J, Qin C X, Li X G, et al. Food web analysis in Zhelin Bay marine ranching[J]. Journal of Fisheries of China, 2018, 42(7): 1026-1039(in Chinese).
    [79] Han D Y, Xue Y, Zhang C L, et al. A mass balanced model of trophic structure and energy flows of a semi-closed marine ecosystem[J]. Acta Oceanologica Sinica, 2017, 36(10): 60-69. doi: 10.1007/s13131-017-1071-6
    [80] 李朝文, 王凯, 程晓鹏, 等. 马鞍列岛海洋牧场褐菖鲉和小黄鱼营养生态位差异[J]. 应用生态学报, 2018, 29(5): 1489-1493.Li C W, Wang K, Cheng X P, et al. Difference of trophic niche between Sebastiscus marmoratus and Larimichthys polyactis in marine ranching of Ma’an Archipelago, China[J]. Chinese Journal of Applied Ecology, 2018, 29(5): 1489-1493(in Chinese).
    [81] 李纯厚, 贾晓平, 齐占会, 等. 大亚湾海洋牧场低碳渔业生产效果评价[J]. 农业环境科学学报, 2011, 30(11): 2346-2352.Li C H, Jia X P, Qi Z H, et al. Effect evaluation of a low-carbon fisheries production by marine ranching in Daya Bay[J]. Journal of Agro-Environment Science, 2011, 30(11): 2346-2352(in Chinese).
    [82] 李娇, 关长涛, 公丕海, 等. 人工鱼礁生态系统碳汇机理及潜能分析[J]. 渔业科学进展, 2013, 34(1): 65-69. doi: 10.3969/j.issn.1000-7075.2013.01.010Li J, Guan C T, Gong P H, et al. Preliminary analysis of carbon sink mechanism and potential of artificial reef ecosystem[J]. Progress in Fishery Sciences, 2013, 34(1): 65-69(in Chinese). doi: 10.3969/j.issn.1000-7075.2013.01.010
    [83] 尹增强, 章守宇. 浙江嵊泗人工鱼礁区渔业资源生态容纳量变动的研究[J]. 渔业科学进展, 2011, 32(5): 108-113. doi: 10.3969/j.issn.1000-7075.2011.05.015Yin Z Q, Zhang S Y. Preliminary study on the variation of the carrying capacity of fishery resources in Shengsi artificial reef area[J]. Progress in Fishery Sciences, 2011, 32(5): 108-113(in Chinese). doi: 10.3969/j.issn.1000-7075.2011.05.015
    [84] 吴忠鑫, 张秀梅, 张磊, 等. 基于线性食物网模型估算荣成俚岛人工鱼礁区刺参和皱纹盘鲍的生态容纳量[J]. 中国水产科学, 2013, 20(2): 327-337.Wu Z X, Zhang X M, Zhang L, et al. Predicting the ecological carrying capacity of the Lidao artificial reef zone of Shandong Province for the sea cucumber, Apostichopus japonicus (Selenck) and the abalone, Haliotis discus hannai, using a linear food web model[J]. Journal of Fishery Sciences of China, 2013, 20(2): 327-337(in Chinese).
    [85] 张继红, 方建光, 王诗欢. 大连獐子岛海域虾夷扇贝养殖容量[J]. 水产学报, 2008, 32(2): 236-241.Zhang J H, Fang J G, Wang S H. Carrying capacity for Patinopecten yessoensis in Zhang Zidao Island, China[J]. Journal of Fisheries of China, 2008, 32(2): 236-241(in Chinese).
    [86] 李永刚, 汪振华, 章守宇. 嵊泗人工鱼礁海区生态系统能量流动模型初探[J]. 海洋渔业, 2007, 29(3): 226-234. doi: 10.3969/j.issn.1004-2490.2007.03.006Li Y G, Wang Z H, Zhang S S. A preliminary approach on the ecosystem model of the artificial reef in Shengsi[J]. Marine Fisheries, 2007, 29(3): 226-234(in Chinese). doi: 10.3969/j.issn.1004-2490.2007.03.006
    [87] 赵静, 章守宇, 许敏. 枸杞海藻场生态系统能量流动模型初探[J]. 上海海洋大学学报, 2010, 19(1): 98-104.Zhao J, Zhang S S, Xu M. The primary research of the energy flow in Gouqi kelp bed ecosystem[J]. Journal of Shanghai Ocean University, 2010, 19(1): 98-104(in Chinese).
    [88] 吴忠鑫, 张秀梅, 张磊, 等. 基于Ecopath模型的荣成俚岛人工鱼礁区生态系统结构和功能评价[J]. 应用生态学报, 2012, 23(10): 2878-2886.Wu Z L, Zhang X M, Zhang L, et al. Structure and function of Lidao artificial reef ecosystem in Rongcheng of Shandong Province, East China: An evaluation based on Ecopath model[J]. Chinese Journal of Applied Ecology, 2012, 23(10): 2878-2886(in Chinese).
    [89] 许祯行, 陈勇, 田涛, 等. 基于Ecopath模型的獐子岛人工鱼礁海域生态系统结构和功能变化[J]. 大连海洋大学学报, 2016, 31(1): 85-94.Xu Z X, Chen Y, Tian T, et al. Structure and function of an artificial reef ecosystem in Zhangzi Island based on Ecopath model[J]. Journal of Dalian Fisheries University, 2016, 31(1): 85-94(in Chinese).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(1447) PDF downloads(57) Cited by()

Proportional views

Present situation and future development of marine ranching construction in China

    Corresponding author: Xiujuan SHAN, shanxj@ysfri.ac.cn
  • 1. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao    266071, China
  • 2. Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao    266235, China
  • 3. Shandong Provincial Key Laboratory for Fishery Resources and Eco-environment, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao    266071, China

Abstract: This paper reviews the marine ranching researches in China since its construction, including introduction of the background and necessity of marine ranching construction in China, and summarizes research process, research content and current basic state of the marine ranching in China. At the same time, we reviewed the research content and development process of marine ranching in foreign countries, especially summarized the research experience of marine ranching in Japan. From their research on marine ranching, researchers of foreign countries concluded that the ultimate goal of marine ranching construction was to restore its natural ecosystem. The current researches of marine ranching in China were focused on their own construction of marine ranching and the population restoration of the enhancement and releasing species. Although there were some researches about the ecological system of marine ranching in China, most of them stayed in the primary research stage, without depth and accuracy. Many research parameters of these researches were introduced from the results of other research works, with no consideration of the differences between natural and artificial sea areas, and the regional differences among marine ranching. The future focus of research work about marine ranching in China should be concentrated on the food web and energy flow of marine ranching’s ecosystem, in order to promote the production of marine ranching, and to provide a scientific basis for the study of natural nutrient channels between artificial reef areas and surrounding waters for ecosystem construction.

1.   海洋牧场的兴起
  • 早在1998年就有研究者发现超过50%的渔业资源种类被充分或过度开发[1]。2008年世界粮农组织发现世界上有评估信息的523个鱼类种群,其中80%被完全或过度开发,仅有20%的种群仍具有继续开发的潜力[2]。我国近海渔业资源衰退也很严重,20世纪70年代起至80年代,海洋捕捞就从捕捞过度走向了竭泽而渔的严重状态[3]。20世纪80年代以前许多著名的鱼汛,如黄渤海的“小黄鱼(Larimichthys polyactis)、蓝点马鲛(Scomberomorus niphonius)和太平洋鲱(Clupea pallasii)鱼汛”;东海的“带鱼(Trichiurus japonicus)、墨鱼(Sepiella maidroni)和大黄鱼(Larimichthys crocea)汛”;南海著名的“万山春汛”、“甲子秋汛”、“粤东春汛”、“青澜春汛”等,在进入90年代已基本消失。如今近海渔业资源小型化低值化现象严重。

    海洋渔业资源严重衰退和生态环境恶化等问题已上升到各国政府首脑关注的层面上,如何有效保护和恢复渔业资源、增加资源补充量是沿海国家一直研究的课题,各国相继实施了一系列的渔业管理措施:控制捕捞努力量,在重要水域设立渔业保护区和实施水生生物资源养护[4]。我国也陆续采取了许多渔业管理措施,如伏季休渔制度、渔船数量和功率“双控”措施、网目尺寸和渔获捕捞量“双限”举动、开展远洋渔业、设立水生生物保护区和开展濒危水生野生动物救助行动等。这些措施对减缓近海渔业资源的衰退起到了积极作用,但仍无法短期内改变渔业资源衰退的局面。与规模化增殖放流相结合的海洋牧场是短期内恢复渔业资源的另一举措。2017年5月,农业部发布“农业绿色发展五大行动”,明确提出“积极推进海洋牧场建设,增殖养护渔业资源”。海洋牧场作为一种生态型渔业增养殖模式再次得到国家和各级地方政府的重视,成为海洋经济发展的热点。

2.   海洋牧场的内涵
  • 海洋牧场源于20世纪70年代的美国和日本,日本为稳定20世纪70年代以来下降的渔业捕捞产量修复传统渔场,于1963年开启“栽培渔业”计划,并在1978年至1987年建成了世界上第一个海洋牧场——日本黑潮牧场,开展了鲷类补充机制、人工鱼礁、苗种培育等研究[5];我国科学家朱树屏[6]早在1963年就提出了海洋捕捞是一种畜牧业;曾呈奎[7]于1978年在中国水产学会恢复大会上建议在我国海洋专属区实现水产生产农牧化,并将海洋农牧化(farming and ranching of the sea)定义为“通过人为的干涉改造海洋环境,以创造经济生物生长发育所需要的良好环境条件,同时,也对生物本身进行必要的改造,以提高它们的质量和产量”。

    随着研究的深入,理论与实践的大力发展,海洋牧场的定义处于不断发展与完善中。杨红生[8]将海洋牧场定义为“基于海洋生态学原理和现代海洋工程技术,充分利用自然生产力,在特定海域科学培育和管理渔业资源而形成的人工渔场”。中国水产科学研究院于2017年召集水产研究者对海洋牧场的定义进行了界定:基于海洋生态系统原理,在特定海域通过人工鱼礁、增殖放流等措施,构建或修复海洋生物繁殖、生长、索饵或避敌所需的场所,增殖养护渔业资源、改善海域生态环境,实现渔业资源可持续利用的渔业模式(水产行业SC/T 9111-2017)。

    国际《海洋科学百科全书》对海洋牧场的定义为:海洋牧场通常是指资源增殖(ocean ranching is most often referred to as stock enhancement),或者说海洋牧场与资源增殖含意几乎相等。它的操作方式主要包括增殖放流和人工鱼礁。增殖放流需要向海中大量释放幼鱼,这些幼鱼捕食海洋环境中的天然饵料并成长,之后被捕捞,增加渔业的生物量;人工鱼礁是通过工程化的方式模仿自然生境(如珊瑚礁),旨在保护、增殖,或修复海洋生态系统的组成部分。它形成的产业涉及到捕捞、养殖、游乐等[9-11]。唐启升[11]基于国际《海洋科学百科全书》对“海洋牧场”的定义和《中国水生生物资源养护行动纲要》的主旨[12],于2019年专门针对“渔业资源增殖、海洋牧场、增殖渔业”等常用科学基本术语的差别和各类增殖活动发展定位等问题进行了深入讨论,明确了渔业资源增殖、海洋牧场、增殖渔业3个概念并无科学意义上的差别,增殖渔业是渔业资源增殖活动达到一定规模时形成的新业态,包含了渔业资源增殖活动或海洋牧场的主要内容。海洋牧场示范区的建立是以人工鱼礁为载体,底播增殖为手段,增殖放流为补充,它的操作方式主要包括增殖放流和人工鱼礁。

3.   国内外海洋牧场研究进展
  • 1979 年,广西钦州地区投放了我国第一组试验性单体人工鱼礁,中国开始了对海洋牧场建设的实践探索。20 世纪90 年代以后,中国学者在海洋牧场的实践基础上,吸收日本和其他国家学者的思想,丰富了海洋牧场的概念和内涵。20世纪末,我国海洋牧场开发还仅限于投放人工鱼礁,投放规模小,人工鱼礁功效甚微,处于模仿国外的阶段,原创性研究未真正开展起来。“十一五”以来,国家“八六三”计划、国家科技支撑计划、公益性行业(农业)科研专项、国家自然科学基金及各省市科技计划项目等均立项开展人工鱼礁、海洋牧场的相关研究,在借鉴国外海洋牧场理念和经验的同时也融合自有研究成果,短期内经历了国外其他国家几十年的发展历程[13]。在人工鱼礁材料结构、水动力特性、生境地修复与优化、礁区生态监测与评估、配套设施研发、管理机制开发模式、生态调控技术等方面均做了大量研究工作,为海洋牧场的发展奠定了技术基础。目前我国海洋牧场的研究主要集中在以下6个方面:

  • 主要是对牧场污染现状、海洋生物、营养盐、流场等各种水文、理化指标和生物指标作背景场分析,以及对藻场和人工鱼礁建成后生态系统健康的评价,以判断是否适合投放人工鱼礁和建设海草场[14-18]

  • 主要是对石块、木材、金属等天然材料;轮胎、船只、车辆、飞机、坦克等废旧材料;混凝土、钢板、工程塑料等建筑材料及其他复合型材料礁体的应用进行分析。如黄梓荣等[19]与陈勇等[20]对比了各种礁体的附着效果、抗压强度和对海水pH的影响;王莲莲等[21]从国内外利用概况和生态效应提出中国应加大对贝壳礁的开发利用;王宏等[22]研究了不同混凝土构件人工鱼礁在自然条件下的使用寿命;废旧汽车和船只的改造投放在国内外均有开展[23]。基于环保因素,在近年的鱼礁与藻礁建设中,用废弃物作为礁体的材料逐渐成为一个趋势。

  • 鱼礁与藻礁产生的一系列效应和礁体自身结构密切相关,人工鱼礁投放后会在礁体周围产生上升流作用、涡流作用、阴影作用、逃避场作用、水温作用、附着作用和趋集作用。吴子岳等[24]、贺亮等[25]、唐衍力等[26]和陈小艳等[27]研究了不同鱼礁和藻礁体不发生滑移和倾覆的稳定条件;张硕等[28]和江艳娥等[29]比较了不同材料与构型人工鱼礁和藻礁的生物聚集效果,张磊等[30]比较了不同模型藻礁的附着效果;随着计算机流体动力学的发展,该技术被用于分析不同结构礁体的流场分布,实现礁体结构优化[31]

  • 礁体的配置规模和组合布局方式是人工鱼礁和藻礁能否能发挥理想效果的重要影响因素。张怀慧等[32]提出单位鱼礁有效包络面积为其在海底投影面积的20倍左右时效果最佳;史红卫[33]认为单位鱼礁的有效边缘在200~300 m之间,一般单位鱼礁间距为400~600 m;虞聪达等[34]研究发现礁区定居性鱼类的种类和数量与单位鱼礁的规模呈正相关关系,但两者间存在一个临界值;俞存根[35]和赵文溪等[36]等设计了不同的组合藻礁群,以增强藻类孢子和幼苗着床,提高成活率;《山东省人工鱼礁建设技术规范》对各类型人工鱼礁单位鱼礁规模及边缘间距都有详细的规定。

  • 投放人工鱼礁和建设藻场的目的是为海洋生物提供庇护、索饵、繁殖、育幼等场所,其根本宗旨是修复生态环境,保护增殖渔业资源。海洋牧场的生态效应一直是国内海洋生物学者研究的重点。如藻场藻的旺发能改变底栖生物群落结构[37];海州湾人工鱼礁区海水特性由投礁前的氮限制转变为投礁后的磷限制,生物群落结构发生了较大变化[38];焦金菊等[39]发现西港小石岛、威海寻山、牟平养马岛和日照前三岛鱼礁区鱼类种类是对照区的1.8倍,平均数量是对照区的3.5倍,平均重量是对照区的1.9倍,鱼类群落结构均高于对照区;诸多研究证实海洋牧场能改善生态环境,礁区水质好于对照区、营养盐结构更趋合理、集鱼效果明显、生物多样性指数增高[40-45]

  • 主要是利用声学、光学、电学、磁学或生物自身的生物学特征,对增养殖对象,如黑鲷(Sparus microcephalus)、许氏平鲉(Sebastes schlegelii)和海胆等诸多生物,进行投饵音响驯化及环境监测,以高效养殖和捕捞,目前国内的研究多处于实验阶段[46-48]

    国外对海洋牧场的方方面面都有诸多研究,如小川良德[49-50]、岗本峰雄等[51]利用鱼探仪、水下摄像和潜水方式对礁区鱼类昼夜活动规律进行了研究,发现不同结构鱼礁诱集鱼类的种类与规格不同,构造越复杂的鱼礁诱集鱼类的种数和生物量越多;智利的海洋生态学家经过20多年的研究,早在20世纪80年代就培育了多种海藻的种植方法[52];Woodhead等[53]连续3年对美国长岛海域粉煤灰和普通混凝土鱼礁生物的附着效果进行了监测;Kim等[54]研究了浅水区鱼礁在波浪作用下的局部冲刷和下陷,发现鱼礁形状对局部流有显著影响,并决定着局部冲刷程度,提出在人工鱼礁选型中应考虑海流特征;Fujihara等[55]分析了鱼礁投放后的定常层流水域的流场变化;Frederic等[56]对比了混凝土和石油灰材料人工鱼礁的生物聚集效果;Kim等[57]在计算流和浪的干扰情况下,计算了韩国全罗南道群岛鲍鱼海洋牧场人工鱼礁最小重量。Yoon等[58]对韩国蔚珍相邻的人工鱼礁与自然鱼礁两个海洋牧场鱼类的组成、生物量和个体大小进行了年际对比研究,发现两者间有明显差异。

  • 现今国际海洋牧场核心技术体系除以日本为代表的鱼群可视化管理和美国为代表的集生境修复、资源增殖和休闲产业化于一体的综合化管理外,还有以韩国为代表的生态系统管理。

    目前海洋牧场生态系统研究是国外海洋牧场研究的重中之重,国外许多专家提出海洋牧场建设的终极目标是恢复生态系统,通过投放人工鱼礁和增殖放流来重组生态系统食物网结构和功能以达到恢复生态系统的目的[59-66]。韩国于2014年将单纯的资源增殖调整为恢复生态系统的增殖放流[67],海洋牧场生态系统研究如火如荼[68-69];日本作为栽培渔业发展最成熟和完善的国家,自1963年成立濑户内海栽培渔业协会开启栽培渔业时代序幕,经过半个世纪后,在人工鱼礁工程技术、关键生物增殖技术、牧场生态效应调查与评估、开发利用与管理模式等栽培方面做了大量系统的研究工作。然而2013年日本对“栽培渔业”进行了50年回顾,发现50年的研究与发展竟未完成当初设定的“增加与恢复渔业资源”目标,日本沿岸2011年渔业生产量仅为1960年的一半,约在110万t左右。早在2010年,即日本在制定第六次栽培渔业基本方针时,就已把过去“一代回收型”的栽培渔业理念改为“资源造成型” [70];Tanaka等[64]提出海洋牧场不仅要恢复商品渔业资源种类,更要增强牧场初级生产力和各种群补充量。通过放流广布性苗种,即洄游范围大、跨海域分布的苗种,以增强放流溢出效应,利用放流捕捞后存活下来的种鱼对渔业资源进行自然补充,以恢复牧场及其周边海域的生态系统;2015年日本开始在西濑户内海实施Satoumi计划,即通过投放人工鱼礁建立海洋牧场,增强牧场初级生产力和各种群补充量,通过生物的溢出效应建立与周边水域自然营养流通道以达到恢复生态系统的目的[71]。Taylor等[65]认为任何种类在增殖放流后都需基于生态系统进行定量评估;Lee等[66]综述全球160多个海洋牧场在设计、应用、性能和管理方面的研究,发现海洋牧场建设的目的已从增殖渔业转移到恢复海洋生态系统。

    全球100多年的增殖史表明,因增殖技术、增殖策略和生态系统的复杂性等因素影响,想实现资源恢复意义的增殖比较难。从资源增殖放流的历史来看,海洋生物放流成功率较低,仅日本对大麻哈鱼(Oncorhynchus keta),美国对鲑鳟鱼、中国对海蜇和中国明对虾(Fenneropenaeus chinensis)等少数种类进行的人工放流取得了显著效果[11]。另世界海洋渔业资源数量波动历史表明,渔业资源恢复是一个复杂而缓慢的过程,开展深入持续的基础研究对未来海洋牧场的发展十分必要[11]

    未来海洋牧场的建设应始终坚持改善和恢复生态系统的理念,注重海洋牧场生态系统结构组成和能流传递等生态修复与资源养护机理机制的研究。

    一直以来国外都非常重视海洋牧场食物网结构与功能研究,大量科学研究也证实了海洋牧场生态研究的重要性。Folke[72]分析波罗的海网箱养殖和海洋牧场自然养殖的大西洋鲑(Salmo salar)能流发现,2种养殖方式都严重依赖自然生态系统的生产力。Pitcher[73]通过Ecopath生态能量通道模型分析发现,在原有基础上,香港海洋鱼礁保护区每年可增加3%的捕捞能力,面积较大的保护区有利于恢复珊瑚礁鱼类资源;Heithausl[74]对澳大利亚鲨鱼湾海草水域大型捕食动物的生态位及生境利用进行了研究,发现生物生境利用模式不完全反映该生物对其食物的利用,各大型捕食动物对各生产者利用程度不一样。Yang[75]通过对济州岛海洋牧场物质循环与能量传递分析发现,其生态系统物质循环由微生物食物网组成,而不是低营养水平的传统食物链,初级生产由下行效应控制,与近东海或近黑潮暖流的韩国近海生态系统完全不一样;Ecopath模型分析发现韩国统营海洋牧场生态系统能量主要集中于第3和第4营养级,而增殖种类许氏平鲉和无备平鲉(S. inermis)恰好处于第3营养级,使得大量增殖这2种鱼成为可能,但两者在礁区存在生态竞争,建议两者分开与礁外鱼类搭配放流以合理利用牧场空间[68]

    我国在海洋牧场的人工鱼礁、监控方面、鱼类选种、繁育及培育和休闲产业化方面都做了大量研究,成效显著。但40余年的研究和实践表明,我国在海洋牧场建设过程中还存在管理和科研上的诸多问题,对海洋牧场缺乏系统性的研究:对海洋牧场初级生产者的生物量和群落结构、环境参数等缺乏长期监测,在海洋牧场海底构造、生物资源评估、典型海洋牧场生态容量评估和海洋牧场生态系统结构等方面还存在着较多的研究空白。近几年我国日益重视海洋牧场生态系统研究,对海洋牧场生态系统食物网结构与功能也做了一些探究,但尚不深入。如采用稳定同位素技术查明了浮游植物、浮游植物与沉积有机物分别是海州湾和象山港海洋牧场的能量基础[76-77];林会洁等[78]弄清了海洋牧场不同功能区对能量的利用方式及生态系统稳定性状况;Han[79]通过能流分析发现胶州湾的初级生产力虽然较高,但大量贝类的增殖削减了初级生产力对渔业资源的生产支持。李朝文等[80]发现马鞍列岛海洋牧场褐菖鲉(Sebastiscus marmoratus)和小黄鱼营养生态位重叠度较高,竞争激烈,建议扩大海洋牧场的规模或增殖放流部分饵料物种以稳定其生态系统;李纯厚等[81]和李娇等[82]对海洋牧场碳汇功能进行了研究;还有海洋牧场增殖海珍品生态容纳量的计算[83-85];及嵊泗、荣成俚岛与獐子岛等人工鱼礁区和枸杞海藻场等海洋牧场食物网结构与生态系统能流的研究[86-89]。2017年9月,中共中央办公厅、国务院办公厅印发了《关于创新体制机制推进农业绿色发展的意见》,将农业绿色发展摆在生态文明建设全局的突出位置,绿色发展已成为农业农村经济发展的主基调。据此,《全国渔业发展第十三个五年规划》将“转变养殖发展方式,推进生态健康养殖;优化捕捞空间布局,严格控制捕捞强度;强化资源保护和生态修复,发展增殖渔业等”列为重点任务。因此,如何做好近海渔业资源养护和管理,实现海洋渔业可持续发展,保障我国食物安全,已成为亟待解决的问题。

Reference (89)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return