• ISSN 1000-0615
  • CN 31-1283/S
Volume 43 Issue 11
Oct.  2019
Article Contents
Turn off MathJax

Citation:

Effects of different cooking methods and in vitro simulated digestion on the immunoactivity of major allergen tropomyosin in Litopenaeus vannamei

  • Corresponding author: Ying LU, y-lu@shou.edu.cn
  • Received Date: 2018-12-24
    Accepted Date: 2019-02-28
  • In this study, three cooking methods of boiled, fried and braised shrimps were used to treat the meat of Litopenaeus vannamei, and the cooked shrimp was subjected to in vitro simulated saliva-gastric-intestinal digestion to investigate the immunological activity after cooking. Changes of major allergen tropomyosin in shrimp were analyzed by SDS-PAGE, Western-blotting and indirect ELISA. The results of SDS-PAGE showed that there was no significant change in the TM bands by three cooking methods, indicating that the TM did not undergo degradation during cooking; the results of immunoblotting and indirect ELISA showed that the immunological activity of TM in boiled, fried and braised shrimp lost 2.08%, 11.33% and 15.56%, respectively. However, the immunological activity of the in vitro simulated digestion products of shrimp meat after cooking was significantly lost, and the immunological activitiy of boiled, fried and braised shrimp were decreased by 86.90%, 88.94% and 97.39%, respectively. Studies have shown that the reduction of shrimp TM immunological activity mainly occurs in the simulated intestinal fluid digestion stage, three cooking treatments can reduce the immunological activity of TM, and the braising treatment significantly reduced the immunological activity of TM. This experiment provides a theoretical basis for the study of allergen reduction mechanism and the development of hypoallergenic aquatic products.
  • 加载中
  • [1] Shi Q L, Lin W W, Zhao Y, et al. Thermal characteristics and state diagram of Penaeus vannamei meat with and without maltodextrin addition[J]. Thermochimica Acta, 2015, 616: 92-99. doi: 10.1016/j.tca.2015.08.016
    [2] 郭雪霞, 王伟华, 刘瑜, 等. 不同干燥方式对南美白对虾理化特性和干燥能耗的影响[J]. 食品工业, 2017, 38(11): 33-38.Guo X X, Wang W H, Liu R, et al. Effects of different drying methods on physical and chemical properties and drying energy consumption of Penaeus vannamei[J]. The Food Industry, 2017, 38(11): 33-38(in Chinese).
    [3] Luber F, Demmel A, Herbert D, et al. Comparative assessment of DNA-based approaches for the quantification of food allergens[J]. Food Chemistry, 2014, 160: 104-111. doi: 10.1016/j.foodchem.2014.03.077
    [4] Yuan F Z, Lv L T, Li Z X, et al. Effect of transglutaminase-catalyzed glycosylation on the allergenicity and conformational structure of shrimp (Metapenaeus ensis) tropomyosin[J]. Food Chemistry, 2017, 219: 215-222. doi: 10.1016/j.foodchem.2016.09.139
    [5] 胡吕霖, 任思婕, 沈清, 等. 不同烹饪方式及体外模拟消化环境对鲟鱼蛋白质氧化及消化性的影响[J]. 食品科学, 2018, 39(20): 63-70. doi: 10.7506/spkx1002-6630-201820010Hu L L, Ren S J, Shen Q, et al. Effect of different cooking treatments and in vitro digestion on protein oxidation and digestibility of sturgeon fillets[J]. Food Science, 2018, 39(20): 63-70(in Chinese). doi: 10.7506/spkx1002-6630-201820010
    [6] Ekezie F G C, Cheng J H, Sun D W. Effects of nonthermal food processing technologies on food allergens: a review of recent research advances[J]. Trends in Food Science & Technology, 2018, 74: 12-25.
    [7] 刘光明, 余惠琳, 黄秀秀, 等. 加工处理方式对蟹类原肌球蛋白的消化稳定性和过敏原性的影响[J]. 中国食品学报, 2011, 11(4): 14-22. doi: 10.3969/j.issn.1009-7848.2011.04.003Liu G M, Yu H L, Huang X X, et al. Effects of processing methods on digestibility and allergenicity of crab tropomyosin[J]. Journal of Chinese Institute of Food Science and Technology, 2011, 11(4): 14-22(in Chinese). doi: 10.3969/j.issn.1009-7848.2011.04.003
    [8] 刘一璇, 林洪, 吴丽莎, 等. 加工方式对刀额新对虾主要过敏原免疫原性的影响[J]. 水产学报, 2011, 35(6): 948-953.Liu Y X, Lin H, Wu L S, et al. Study on effects of different processings on immunogenicity of shrimp (Metapenaeus ensis) allergen[J]. Journal of Fisheries of China, 2011, 35(6): 948-953(in Chinese).
    [9] Eva U, Lars K, Michael H, et al. The effects of gastric digestion on codfish allergenicity[J]. Journal of Allergy and Clinical Immunology, 2005, 115(2): 377-382. doi: 10.1016/j.jaci.2004.10.029
    [10] Shimakura K, Tonomura Y, Hamada Y, et al. Allergenicity of crustacean extractives and its reduction by protease digestion[J]. Food Chemistry, 2005, 91(2): 247-253. doi: 10.1016/j.foodchem.2003.11.010
    [11] US Pharmacopoeia, the National Formulary. Simulated gastric fluid and simulated intestinal fluid, TS[M]//The United States Pharmacopeia 23, The National Formulary 18. Rockville, MD: The United States Pharmacopeial Convention, Inc., 1995: 2052-2053.
    [12] Hur S J, Lee S Y, Lee S J. Effect of biopolymer encapsulation on the digestibility of lipid and cholesterol oxidation products in beef during in vitro human digestion[J]. Food Chemistry, 2014, 116: 254-260.
    [13] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature, 1970, 227(5259): 680-685. doi: 10.1038/227680a0
    [14] Song Y N, Li Z X, Lin H, et al. Effect of malondialdehyde treatment on the IgE binding capacity and conformational structure of shrimp tropomyosin[J]. Food Chemistry, 2015, 175: 374-380. doi: 10.1016/j.foodchem.2014.12.001
    [15] Kamath S D, Abdel Rahman A M, Komoda T, et al. Impact of heat processing on the detection of the major shellfish allergen tropomyosin in crustaceans and molluscs using specific monoclonal antibodies[J]. Food Chemistry, 2013, 141(4): 4031-4039. doi: 10.1016/j.foodchem.2013.06.105
    [16] Lu Y, Ohshima T, Ushio H, et al. Immunological characteristics of monoclonal antibodies against shellfish major allergen tropomyosin[J]. Food Chemistry, 2007, 100(3): 1093-1099. doi: 10.1016/j.foodchem.2005.11.015
    [17] Lasekan A O, Nayak B. Effects of buffer additives and thermal processing methods on the solubility of shrimp (Penaeus monodon) proteins and the immunoreactivity of its major allergen[J]. Food Chemistry, 2016, 200: 146-153. doi: 10.1016/j.foodchem.2016.01.015
    [18] Saptarshi S R, Sharp M F, Kamath S D, et al. Antibody reactivity to the major fish allergen parvalbumin is determined by isoforms and impact of thermal processing[J]. Food Chemistry, 2014, 148: 321-328. doi: 10.1016/j.foodchem.2013.10.035
    [19] 曹荣, 刘淇, 殷邦忠, 等. 虾仁TPA质构分析及不同熟制加工方式对其品质的影响[J]. 食品研究与开发, 2010, 31(6): 1-5. doi: 10.3969/j.issn.1005-6521.2010.06.001Cao R, Liu Q, Yin B Z, et al. Application of TPA in peeled prawn and effect of cooking technology on its quality[J]. Food Research and Development, 2010, 31(6): 1-5(in Chinese). doi: 10.3969/j.issn.1005-6521.2010.06.001
    [20] 李莹, 刘源, 张丹妮, 等. 传统与现代工艺金华火腿蛋白质的体外消化特性研究[J]. 南京农业大学学报, 2018, 41(1): 163-171. doi: 10.7685/jnau.201704007Li Y, Liu Y, Zhang D N, et al. Study on in vitro digestibility of proteins from Jinhua ham between traditional and modern processes[J]. Journal of Nanjing Agricultural University, 2018, 41(1): 163-171(in Chinese). doi: 10.7685/jnau.201704007
    [21] Yvon M, Beucher S, Scanff P, et al. In vitro simulation of gastric digestion of milk proteins: Comparison between in vitro and in vivo data[J]. Journal of Agricultural and Food Chemistry, 1992, 40(2): 239-244. doi: 10.1021/jf00014a014
    [22] Bavaro S L, Di Stasio L, Mamone G, et al. Effect of thermal/pressure processing and simulated human digestion on the immunoreactivity of extractable peanut allergens[J]. Food Research International, 2018, 109: 126-137. doi: 10.1016/j.foodres.2018.04.021
    [23] Barrett A J, Rawlings N D, Woessner J F. Handbook of proteolytic enzymes[M]. Amsterdam: Elsevier, 2004: 136-137.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article views(2757) PDF downloads(6) Cited by()

Proportional views

Effects of different cooking methods and in vitro simulated digestion on the immunoactivity of major allergen tropomyosin in Litopenaeus vannamei

    Corresponding author: Ying LU, y-lu@shou.edu.cn
  • 1. College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
  • 2. Shanghai Engineering Research Center of Aquatic Product Processing &  Preservation, Shanghai Ocean University, Shanghai    201306, China
  • 3. Laboratory of Quality &  Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai    201306, China

Abstract: In this study, three cooking methods of boiled, fried and braised shrimps were used to treat the meat of Litopenaeus vannamei, and the cooked shrimp was subjected to in vitro simulated saliva-gastric-intestinal digestion to investigate the immunological activity after cooking. Changes of major allergen tropomyosin in shrimp were analyzed by SDS-PAGE, Western-blotting and indirect ELISA. The results of SDS-PAGE showed that there was no significant change in the TM bands by three cooking methods, indicating that the TM did not undergo degradation during cooking; the results of immunoblotting and indirect ELISA showed that the immunological activity of TM in boiled, fried and braised shrimp lost 2.08%, 11.33% and 15.56%, respectively. However, the immunological activity of the in vitro simulated digestion products of shrimp meat after cooking was significantly lost, and the immunological activitiy of boiled, fried and braised shrimp were decreased by 86.90%, 88.94% and 97.39%, respectively. Studies have shown that the reduction of shrimp TM immunological activity mainly occurs in the simulated intestinal fluid digestion stage, three cooking treatments can reduce the immunological activity of TM, and the braising treatment significantly reduced the immunological activity of TM. This experiment provides a theoretical basis for the study of allergen reduction mechanism and the development of hypoallergenic aquatic products.

  • 凡纳滨对虾(Litopenaeus vannamei)因其含有丰富的蛋白质、矿物质,以及DHA和EHA等不饱和脂肪酸,成为当今世界养殖产量最高的三大虾类之一,同时由于其较快的生长速率和良好的抗逆性成为我国的主要经济虾类[1-2]。虾蟹等甲壳类水产品会引起某类特定人群的过敏反应,被联合国粮农组织和世界卫生组织定义为八大类食物过敏原之一[3]。原肌球蛋白(tropomyosin,TM)为一种热稳定盐溶性蛋白,已被证实广泛存在于虾类等水产品中,具有大量抗原表位和较高的交叉反应活性[4],成为各国学者的主要研究对象。

    烹饪是肉类常见的热处理方式。研究发现,烹饪处理不仅能够杀菌以保证食物的安全、赋予肉类良好的感官品质,而且能够对食物中的过敏原产生破坏作用[5-6]。刘光明等[7]采用超声波、微波、超声波结合蒸煮处理拟穴青蟹(Scylla paramamosain),再进行模拟胃肠液消化,发现蟹肉的过敏原性有不同程度的降低,但其过敏原蛋白TM仍旧存在,并没有完全消除。刘一璇等[8]采用冻干、烘干、虾丸化和油炸4种加工方法处理刀额新对虾(Metapenaeus ensis),然后利用体外模拟胃液消化模型,研究了不同加工处理过程中对虾类主要过敏原蛋白免疫活性的变化,研究表明,不同加工方式处理的虾类,其过敏原性有较大变化。Eva等[9]对鲟蛋白进行模拟胃液消化,发现鲟提取物的IgG结合能力降低,鲟过敏原在生理上降解时,其引发肠道过敏反应的能力大大降低。Shimakura等[10]分别利用胰蛋白酶、蛋白酶P、α-胰凝乳蛋白酶水解虾蟹等水产品的抽提液,最终发现水产品的主要过敏原蛋白含量都有一定程度的降低,从而使其过敏原性降低。

    为调查烹饪以及体外模拟消化对虾类主要过敏原原肌球蛋白含量和免疫活性的影响,本研究采用水煮、油炸和红烧3种家庭常见的烹饪方式处理凡纳滨对虾,并且对烹饪处理后的虾肉进行模拟体外唾—胃—肠液消化,系统地研究了虾肉主要过敏原免疫活性在烹饪和体外模拟消化过程中的变化。

    • 凡纳滨对虾购自浦东新区农工商超市;层析滤纸(3030-861),德国Whatman公司;硝酸纤维素膜(NC),德国赛多利斯公司;胰蛋白酶(T1426-50MG)、胰液素(P1750-500G),脂肪酶(L3126-100G)、唾液淀粉酶(A3176-1MN)、胃蛋白酶(P7000-100G)、黏蛋白(M2378-500G),TEMED(0761)、DAB显色液(D0426-50SET)、降植烷等均购于Sigma公司;HRP酶标记的兔抗鼠IgG抗体购于Invitrogen公司;非预染Marker和预染Marker均购于Fermentas公司;牛血清白蛋白(BSA)购于上海生工生物工程股份有限公司;其他试剂和药品均为国产分析纯。

    • 组织匀浆机(8010S),美国Waring公司;电子天平(PL2002),瑞士梅特勒-托利多仪器(上海)有限公司;电子天平(PB303-S),瑞士梅特勒-托利多仪器(上海)有限公司;电热恒温水槽(DK-8D型),上海一恒科学仪器有限公司;纯水系统(Elixtm),美国Millipore公司;蛋白质电泳仪(mini protean 4),美国BIO-RAD;半干式转膜仪(AE-8135),日本ATTO公司;凝胶扫描仪(powerlook 2100XL-ΜSB),ΜMAX公司;实验室pH计(pHSJ-4),上海精密科学仪器有限公司—雷磁仪器制造厂;脱色摇床(TS-8),江苏海门其林贝尔仪器制造有限公司;恒温磁力搅拌器(H05-1),上海梅颖浦仪器仪表制造有限公司;高速冷冻离心机(Z36HK),德国Hermle公司;高速冷冻离心机(CR21G),日本HITACHI公司;PD‐10脱盐柱、Protein-G亲和层析柱子均购自英国GE Healthcare公司。

    • 将新鲜的凡纳滨对虾用清水冲洗干净,进行称重,分为2组,每组500 g,放入沸水中煮沸10 min后取出,置于冰上待用,作为水煮虾;取新鲜的凡纳滨对虾若干用清水冲洗干净,进行称重,分为2组,每组500 g,用吸水纸吸干虾表面的水分,于150~160 °C植物油中油炸至熟,5 min后取出,置于冰上,待用,作为油炸虾;红烧虾统一购买于上海海洋大学第一食堂。

    • 将烹饪处理后的虾肉进行称重,各取5 g,按照1∶5的比例加入1% Tween-20的PBS溶液后,匀浆30 s得到肌肉匀浆液,煮沸15 min后置于冰上30 min,10 000 r/min离心20 min,取上清液,即为样品抽提液。

    • 人工唾液、胃液和肠液配置参照美国药典[11],模拟唾—胃—肠液参考Hur等[12]的方法,略有改动。人工唾液为含有黏液素和α-淀粉酶的盐溶液,胃液包含胃蛋白酶和黏液素,肠液为含有胰酶和脂肪酶的盐溶液。分别取水煮、油炸和红烧虾肉,虾肉和模拟唾液按1∶1(W/V)比例混合,调节pH至1.3,37 °C水浴消化1~2 min;再按照虾肉和模拟胃液为1∶2(W/V)的比例加入模拟胃液,调节pH至8.1,37 °C恒温水浴消化1~2 h;按照虾肉和模拟肠液为1∶2(W/V)的比例加入模拟肠液,37 °C恒温反应4 h,回收不同时间段的消化产物。

    • 十二烷基硫酸钠—聚丙烯酰胺凝胶电泳(SDS-PAGE)根据Laemmli[13]的方法进行。电泳预制胶浓度为12%,样品上样量8 μL。将不同待测样品溶液与2×上样缓冲液混合,煮沸后的溶液即为电泳样品。设置电源电压进行跑胶,待电泳结束后取出预制胶,进行考马斯亮蓝染色液染色,然后脱色液脱色至蛋白质条带清晰。

    • 免疫印迹法(Western-blotting)根据Song等[14]的方法进行。设置半干式转膜仪电流电压,运行1 h后将预制胶上的蛋白转移至PVDF膜。用5%脱脂奶粉封闭1 h,然后用PBST洗涤膜3次,每次5 min。PVDF膜用TM的特异性单抗5G5E (1 μg/mL)孵育1 h,洗涤。然后用HRP-羊抗小鼠IgG (1∶2 500)溶液孵育1 h,洗液洗涤。加入DAB工作液,显色5 min,用去离子水洗去残留显色液并风干。

    • 间接酶联免疫法(indirect immunosorbent assay,ELISA)根据Kamath等[15]的方法略有改动,即将样品按照一定浓度稀释后,4 °C过夜包被,PBST溶液洗涤。然后用5%脱脂奶粉37 °C封闭2 h,洗涤。加入5 μg/mL的单克隆抗体5G5E,37 °C孵育1 h,洗涤。加入HRP-羊抗小鼠IgG (用抗体稀释液稀释2 500倍)37 °C孵育1 h,洗涤。然后加入邻苯二胺底物显色液室温反应15 min,最后加入2 mol/L硫酸终止反应,并立即用酶标仪测定490 nm处波长的吸光度值。以50 mmol/L的碳酸盐溶液作为阴性对照,以抗体稀释液稀释的特异性单克隆抗体作为阳性对照,每个样品做4个平行。

    2.   结果
    • SDS-PAGE能够从电泳条带中反映不同处理样品液蛋白分子量和浓度的变化。蛋白免疫印迹和间接ELISA通过抗原抗体的特异性反应,能够评价过敏原免疫活性的变化,本实验采用的本实验室自制的小鼠单克隆抗体5G5E对甲壳类主要过敏原TM有特异性反应[16]。水煮、油炸和红烧3种烹饪方式处理的样品的SDS-PAGE和Western-blotting结果如图1所示(图1-b中所用为市售的预染色Marker,可以直接在PVDF膜上显色,红色条带有助于确定条带的分子量,图3同),间接ELISA结果如图2所示。

      Figure 1.  SDS-PAGE (a) and Western-blotting (b) results for different cooking ways shrimp meat extract before digestion

      Figure 2.  Indirect ELISA results for different cooking shrimp extract

      与生虾样品相比,3种烹饪方式处理虾样中的蛋白质条带减弱,尤其是在45、35以及约21 ku处的条带有较为明显的减弱,25~35 ku处的条带基本消失,大分子条带也明显减少(图1-a)。但不同烹饪处理对虾类蛋白质的破坏程度不同,红烧虾肉样品的电泳条带粗细减小程度最为明显,其次为油炸,水煮虾样品的电泳条带减小程度最低。烹饪虾样品液与单克隆抗体5G5E在35 ku附近产生较强的反应条带,说明此条带为目标条带TM。对比不同样品的免疫反应条带,生虾样品的免疫反应条带最粗,而经水煮、油炸和红烧样品的免疫反应条带轻微减弱(图1-b),但3种烹饪样品的免疫反应条带无明显差别。

      采用间接ELISA方法评价烹饪处理对虾肉中主要过敏原TM免疫活性的降低程度。由ELISA结果可知,生虾、水煮、油炸和红烧虾样的OD值分别为0.97、0.95、0.86和0.82,3种烹饪处理使虾样的OD值降低。虾样的OD值降低表示样品中TM与单克隆抗体5G5E的结合能力降低,进一步表明样品中TM免疫活性降低,经水煮、油炸和红烧3种烹饪方式处理后,TM免疫活性分别降低了2.08%、11.33%、15.56%(图2)。不同烹饪方式对TM的免疫活性有不同程度的影响,其中红烧对TM免疫活性的降低程度最大,为15.56%,水煮对TM免疫活性的降低程度最小,为2.08%。

    • 为评价水煮、油炸和红烧虾肉在体外模拟消化时TM免疫活性的变化,对烹饪后的虾肉体外模拟唾—胃—肠液消化,并采用免疫印迹和间接ELISA评价不同时间的消化产物中TM的免疫活性,其结果分别如图3图4所示。

      Figure 3.  Western-blotting of simulated saliva-gastric-intestinal continuous digestion products of boiled (a), fried (b) and braised (c) in three cooking ways

      Figure 4.  Indirect ELISA results for shrimp samples after continuous digestion

      随着消化时间的延长,3种烹饪方式处理的虾肉中,消化产物样品的TM条带逐渐变浅,整体呈明显消减的趋势(图3)。不同烹饪处理的虾肉经体外模拟消化过程中,TM免疫反应条带降低或消失的时间不同。水煮虾样品经体外模拟消化4 h后仍然存在微弱的反应条带(图3-a);油炸虾消化3 h后(肠液消化阶段)的消化产物TM免疫反应条带消失(图3-b);而红烧虾消化30 min后(胃液消化阶段)的消化产物中TM免疫反应条带已经消失(图3-c)。

      由间接ELISA结果可知,水煮、油炸和红烧样品经唾—胃—肠液连续消化后,样品的OD值分别为0.077、0.064和0.017,而未经连续消化的烹饪虾样的OD值分别为0.586、0.581和0.633。3种烹饪方式下,虾肉的消化产物TM与特异性单抗5G5E抗体的结合能力均下降,说明虾肉经消化后其TM免疫活性部分丢失。ELISA的结果与免疫印迹结果相一致,唾—胃—肠液连续消化分别使水煮、油炸、红烧虾肉连续消化产物TM的免疫活性降低了86.90%、88.94%、97.39%,同时红烧烹饪对TM的免疫活性的降低作用最为明显,为97.39%。

    3.   讨论
    • 研究发现,水煮、油炸和红烧3种烹饪方式处理能够破坏虾类的可溶性蛋白,破坏程度从大到小依次为红烧、油炸和水煮。3种烹饪处理方式能够在一定程度上降低TM的免疫活性,但3种方式之间的降低程度无明显区别。Lasekan等[17]对斑节对虾(Penaeus monodon)进行水煮清蒸、油炸等烹饪处理,由于蛋白质热变性或结构被破坏,使TM的IgE结合能力降低。Saptarshi等[18]通过鱼类小清蛋白的单克隆抗体评价热处理鱼样品中的小清蛋白免疫活性,研究发现热处理后小清蛋白与抗体结合能力下降。本研究发现油炸和红烧能够同等程度地降低TM的免疫活性,而水煮处理对TM免疫活性几乎没有影响,这可能是由于3种烹饪方式对蛋白质的破坏程度和对肌肉组织结构的影响程度不同造成的。曹荣等[19]发现高温处理使虾仁硬度、弹性和咀嚼性大幅度下降,不同的烹饪方式对虾肉组织结构的影响不同,烹饪处理会使肌肉结构松散、交联性变差,从而影响虾肉蛋白质的稳定性,进而影响虾肉过敏原蛋白的稳定性,这很可能是导致红烧虾肉的TM免疫活性和过敏原性下降较显著的原因。

      对比消化前后的烹饪虾样发现,经体外模拟消化后,虾样中TM的含量和免疫活性下降,说明在模拟消化的过程中TM结构被破坏,在各种酶的作用下TM发生降解。研究表明,食物中的蛋白质能够在淀粉酶、胃蛋白酶、胰酶等多种酶的作用下被分解为小分子的肽和氨基酸,而在体外模拟人体消化的过程中,TM免疫活性的降低主要发生在胃肠液消化阶段[20-22]。胡吕霖等[5]对烹饪后的中华鲟(Acipenser sinensis)进行体外模拟消化实验,发现烤制与油炸处理降低了中华鲟的蛋白质消化稳定性。本实验对3种烹饪方式进行了比较,发现红烧虾肉经体外模拟消化后,其TM的免疫活性降低程度最大,其次为油炸,降低程度最小的为水煮虾肉。经红烧和油炸后的虾肉肌原纤维变短,使肌肉组织结构松散,进而影响TM的消化稳定性,从而使TM的免疫活性下降的更加明显。胰酶是胰蛋白酶、胰淀粉酶、胰脂肪酶的混合物,能作用于赖氨酸(Lys)、精氨酸(Arg)、淀粉、脂肪等物质,能够促进消化,因而对TM的消化作用显著,对其过敏原性的影响较大[23]。Bavaro等[22]对花生进行高压灭菌处理后体外模拟消化,发现花生中过敏原的过敏反应明显降低。虾肉连续消化过程中,在淀粉酶、胃蛋白酶、胰蛋白酶等多种消化酶共同水解的作用下,过敏原TM被酶水解,从而使TM的免疫活性降低。

      本研究通过水煮、油炸和红烧分别处理凡纳滨对虾虾肉,发现红烧烹饪后的虾样TM免疫活性的丢失和降低最为显著。此外,发现过敏原在体外模拟消化过程中有一定的耐受性,TM免疫活性的降低主要发生在胃液和肠液消化阶段,尤其是肠液消化阶段。本研究可为今后探究胃肠消化对虾类食品的致敏性消减作用机制、食物过敏机制提供科学依据,同时对今后开发过敏原的消减技术和低致敏性虾制品具有一定的参考价值。

Reference (23)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return