• ISSN 1000-0615
  • CN 31-1283/S
Article Contents
Turn off MathJax

Citation:

Histological and morphological observations of the gill and swim bladder development of Lateolabrax maculatus

  • Corresponding author: Yun LI, yunli0116@ouc.edu
  • Received Date: 2018-07-13
    Accepted Date: 2018-11-14
  • In order to elucidate the development of gill and swim bladder of Lateolabrax maculatus, in this study, histological section technique and morphological observation were used to systematically study the occurrence and development of gill and swim bladder of L. maculatus from 1 to 45 days. The results showed that the post-embryonic development of the gill of L. maculatus juvenile can be divided into four stages, including the appearance period of gills primordium (0-3 d), the differentiation period of filaments (4-14 d), the differentiation stage of lamella (15-25 d) and the completed period of gills (26-45 d). At the water temperature of 15-18 °C, the primordial filament was observed at 1 d, and the lamella structures formed from the pseudobranch were firstly observed at 15 d. After 25 d, the lamella structures were widely distributed in each juvenile gill arch. After 45 d, a well-developed gill structure of juvenile fish was clearly detected and identical to adult fish. According to the observation results, the development stages of the swim bladder organ of L. maculatus were divided into four stages: formation, expansion, aeration and degeneration. The appearance of swim bladder primordium was not observed on the newly hatched larvae, but after hatched for 1 day. After 5 d, the swim bladder cavity of larvae becomes larger and longer. The inflation of the larvae swim bladder was completed at 11 d. Finally, the degeneration of swim bladder of larvae began to occur after 13 d.
  • 加载中
  • [1] Zhang X Y, Wen H S, Wang H L, et al. RNA-Seq analysis of salinity stress–responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus)[J]. PLoS One, 2017, 12(3): e0173238. doi: 10.1371/journal.pone.0173238
    [2] 刘阳, 温海深, 李吉方, 等. 盐度与pH对花鲈孵化、初孵仔鱼成活及早期幼鱼生长性能的影响[J]. 水产学报, 2017, 41(12): 1867-1877.Liu Y, Wen H S, Li J F, et al. Effects of salinity and pH on hatching and larval activity of Lateolabrax maculatus[J]. Journal of Fisheries of China, 2017, 41(12): 1867-1877(in Chinese).
    [3] Marshall W, Grosell M. Ion transport, osmoregulation, and acid-base balance[M]//Evans D H, Claiborne J B. The Physiology of Fishes. 3rd ed. Boca Raton: CRC Taylor and Francis, 2006.
    [4] Battaglene S C, McBride S, Talbot R B. Swim bladder inflation in larvae of cultured sand whiting, Sillago ciliata Cuvier (Sillaginidae)[J]. Aquaculture, 1994, 128(1-2): 177-192. doi: 10.1016/0044-8486(94)90112-0
    [5] 何滔, 肖志忠, 刘清华, 等. 条石鲷鳃的组织发育及鳃上钠钾三磷酸腺苷酶活性的早期变化[J]. 水产学报, 2013, 37(4): 520-525.He T, Xiao Z Z, Liu Q H, et al. Ontogeny of the gill and Na+, K+-ATPase activity of rock bream (Oplegnathus fasciatus)[J]. Journal of Fisheries of China, 2013, 37(4): 520-525(in Chinese).
    [6] 区又君, 何永亮, 李加儿. 卵形鲳鲹胚后发育阶段鳃的分化和发育[J]. 中国水产科学, 2012, 19(1): 13-21.Ou Y J, He Y L, Li J E. Differentiation and development of the gill in Trachinotus ovatus during larval and juvenile development[J]. Journal of Fishery Sciences of China, 2012, 19(1): 13-21(in Chinese).
    [7] Santamaría C A, de Mateo M M, Traveset R, et al. Larval organogenesis in common dentex Dentex dentex L. (Sparidae): Histological and histochemical aspects[J]. Aquaculture, 2004, 237(1-4): 207-228. doi: 10.1016/j.aquaculture.2004.03.020
    [8] 郭恩棉, 张艳萍, 王鑫. 短盖巨脂鲤鳃、伪鳃和鳔胚后发育学研究[J]. 海洋湖沼通报, 2005(3): 31-37. doi: 10.3969/j.issn.1003-6482.2005.03.005Guo E M, Zhang Y P, Wang X. Study on the postembryonic development of the gill, pseudobranch and swim bladder of the white Achama[J]. Transactions of Oceanology and Limnology, 2005(3): 31-37(in Chinese). doi: 10.3969/j.issn.1003-6482.2005.03.005
    [9] Falk-Petersen I B. Comparative organ differentiation during early life stages of marine fish[J]. Fish & Shellfish Immunology, 2005, 19(5): 397-412.
    [10] Hwang P P, Lee T H, Lin L Y. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2011, 301(1): R28-R47. doi: 10.1152/ajpregu.00047.2011
    [11] Philpott C W, Copeland D E. Fine structure of chloride cells from three species of Fundulus[J]. Journal of Cell Biology, 1963, 18(2): 389-404. doi: 10.1083/jcb.18.2.389
    [12] Beyenbach K W, Freire C A, Kinne R K, et al. Epithelial transport of magnesium in the kidney of fish[J]. Mineral and Electrolyte Metabolism, 1993, 19(4-5): 241-249.
    [13] 门强, 雷霁霖, 武云飞. 鳔器官的发育对人工培育鱼苗的影响[J]. 海洋水产研究, 2003, 24(1): 80-84.Men Q, Lei J L, Wu Y F. Influence of abnormal development of swimbladder on the larvae rearing of marine fish[J]. Marine Fisheries Research, 2003, 24(1): 80-84(in Chinese).
    [14] Moore A, Prange M A, Summerfelt R C, et al. Evaluation of tank shape and a surface spray for intensive culture of larval walleyes fed formulated feed[J]. The Progressive Fish-Culturist, 1994, 56(2): 100-110. doi: 10.1577/1548-8640(1994)056<0100:EOTSAA>2.3.CO;2
    [15] 陈礼强, 吴青, 郑曙明, 等. 细鳞裂腹鱼胚胎和卵黄囊仔鱼的发育[J]. 中国水产科学, 2008, 15(6): 927-934. doi: 10.3321/j.issn:1005-8737.2008.06.005Chen L Q, Wu Q, Zheng S M, et al. Development of embryo and yolk-sac larva of Schizothorax chongi[J]. Journal of Fishery Sciences of China, 2008, 15(6): 927-934(in Chinese). doi: 10.3321/j.issn:1005-8737.2008.06.005
    [16] 马爱军, 雷霁霖, 马英杰, 等. 真鲷仔稚鱼鳔发育与分化研究[J]. 青岛海洋大学学报, 1998, 28(4): 593-598.Ma A J, Lei J L, Ma Y J, et al. Differentiation and development of the swimbladder structure in larvae of the red sea bream Pagrus major[J]. Journal of Ocean University of Qingdao, 1998, 28(4): 593-598(in Chinese).
    [17] Makino N, Uchiyama M, Iwanami S, et al. Differentiation and development of the swimbladder in larvae of the Japanese sea bass Lateolabrax japonicus[J]. Nippon Suisan Gakkaishi, 1995, 61(2): 143-150. doi: 10.2331/suisan.61.143
    [18] Yamada Y, Zhang H, Okamura A, et al. Morphological and histological changes in the swim bladder during maturation of the Japanese eel[J]. Journal of Fish Biology, 2001, 58(3): 804-814. doi: 10.1111/jfb.2001.58.issue-3
    [19] Barahona-Fernandes M H. Effect of aeration on the survival and growth of sea bass (Dicentrarchus labrax L.) larvae: a preliminary study[J]. Aquaculture, 1978, 14(1): 67-74. doi: 10.1016/0044-8486(78)90141-2
    [20] Palińska-Zarska K, Zarski D, Krejszeff S, et al. Tank wall color affects swimbladder inflation in Eurasian perch, Perca fluviatilis l., under controlled conditions[J]. Communications in Agricultural and Applied Biological Sciences, 2013, 78(4): 338-341.
    [21] Yin A, Korzh S, Winata C L, et al. WNT signaling is required for early development of zebrafish swimbladder[J]. PLoS One, 2011, 6(3): e18431. doi: 10.1371/journal.pone.0018431
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article views(2789) PDF downloads(23) Cited by()

Proportional views

Histological and morphological observations of the gill and swim bladder development of Lateolabrax maculatus

    Corresponding author: Yun LI, yunli0116@ouc.edu
  • Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao    266003, China

Abstract: In order to elucidate the development of gill and swim bladder of Lateolabrax maculatus, in this study, histological section technique and morphological observation were used to systematically study the occurrence and development of gill and swim bladder of L. maculatus from 1 to 45 days. The results showed that the post-embryonic development of the gill of L. maculatus juvenile can be divided into four stages, including the appearance period of gills primordium (0-3 d), the differentiation period of filaments (4-14 d), the differentiation stage of lamella (15-25 d) and the completed period of gills (26-45 d). At the water temperature of 15-18 °C, the primordial filament was observed at 1 d, and the lamella structures formed from the pseudobranch were firstly observed at 15 d. After 25 d, the lamella structures were widely distributed in each juvenile gill arch. After 45 d, a well-developed gill structure of juvenile fish was clearly detected and identical to adult fish. According to the observation results, the development stages of the swim bladder organ of L. maculatus were divided into four stages: formation, expansion, aeration and degeneration. The appearance of swim bladder primordium was not observed on the newly hatched larvae, but after hatched for 1 day. After 5 d, the swim bladder cavity of larvae becomes larger and longer. The inflation of the larvae swim bladder was completed at 11 d. Finally, the degeneration of swim bladder of larvae began to occur after 13 d.

  • 花鲈(Lateolabrax maculatus)隶属鲈形目(Perciformes),鮨科(Serranidae),花鲈属(Lateolabrax),为我国重要的海产经济鱼类,在海水、半咸水、淡水水域均可存活与生长[1]。目前花鲈育苗技术已取得一定突破[2],但仔鱼开口期和变态期仍属危险期,易造成大量死亡。鳃作为水生动物的特有器官,不仅是气体交换的主要场所,其在离子转运、酸碱平衡及氨释放中亦起到重要作用[3]。而鳔器官充气发生在内源性营养向外源性营养转换的关键时期。鳔未膨胀的仔鱼会出现生长减缓、存活率降低、脊柱前凸等现象,不能用于养殖[4]。本实验借助形态学与组织学手段,对花鲈仔稚鱼鳔与鳃器官的发生、发育进行系统研究,观察0~45日龄花鲈仔稚鱼鳃与鳔器官的发育过程,以期更好地了解花鲈仔稚鱼的早期发育过程,为寻找适合其生长的水环境、提高育苗成活率提供理论依据。

1.   材料与方法
  • 实验于珠海斗门河口渔业研究所的育苗车间进行样品采集,花鲈受精卵来自福建漳州诏发水产养殖有限公司。在孵化后0~45 d,每天对孵出仔鱼进行采样,样品经Bouin氏液固定24 h后,用70%酒精长期保存。经脱水、透明、包埋后,使用Lecia RM切片机对样品进行纵、横方向连续切片,厚度6~8 μm,经干燥后,进行H.E染色。最后中性树胶封片。

    使用Olympus光学显微镜观察仔稚鱼各器官发育情况,并用Olympus Micro Suite TMFIVE照相系统拍照。

2.   结果
  • 1日龄仔鱼[全长(3.80±0.10) mm],在消化管最前端出现空腔(口咽腔原基),空腔后部可见一列鳃原基(图版Ⅰ-1);2日龄仔鱼[全长(4.07±0.08) mm],口咽腔形成,口咽腔靠腹部侧鳃原基进一步分化(图版Ⅰ-2);3日龄仔鱼[全长(4.59±0.12) mm],可见4对原始鳃弓,由一些未分化的上皮细胞包围成软骨细胞中心而形成(图版Ⅰ-3);4日龄仔鱼[全长(4.93±0.15) mm],鳃弓的上皮细胞向咽腔内生长而形成鳃丝原基。鳃弓上出现原始的血管系统,可见零星的血细胞。鳃弓上可见少量的肌纤维(图版Ⅰ-4);6日龄仔鱼[全长(4.96±0.11) mm],鳃丝基部可见泌氯细胞,细胞的形状不规则,细胞质呈红色,着色较深(图版Ⅰ-5);8日龄仔鱼[全长(5.15±0.16) mm],鳃丝基部出现扁平细胞,其内部可见黏液细胞,胞体较大,胞质透明(图版Ⅰ-6);13日龄仔鱼[全长(6.30±0.13) mm],鳃丝进一步分化,鳃盖基部、与鳃盖连接处的口腔顶壁上的黏膜下层增厚,分化形成假鳃原基(图版Ⅰ-7);14日龄仔鱼[全长(6.40±0.31) mm],鳃丝继续分化,鳃丝前端柱细胞增多(图版Ⅰ-8)。

    Figure 图版Ⅰ.  Histology of the gill development of L. maculatus 1-14 d after hatched

  • 15日龄仔鱼[全长(6.80±0.27) mm],假鳃原基生长分化,出现类似于鳃小片的典型结构,鳃小片基部泌氯细胞显著增多(图版Ⅱ-1);17日龄仔鱼[全长(7.56±0.42) mm],第三鳃弓上出现鳃小片的典型结构,此时出现尾鳍分化(图版Ⅱ-2)。

    Figure 图版Ⅱ.  Histology of the gill development of L. maculatus 15-45 d after hatched

    19日龄仔鱼[全长(7.97±0.35) mm],第二鳃弓上出现鳃小片的典型结构(图版Ⅱ-3)。

    21日龄仔鱼[全长(7.99±0.63) mm],第四鳃弓上出现鳃小片的典型结构(图版Ⅱ-4)。

    23日龄仔鱼[全长(8.28±0.44) mm],假鳃鳃丝延长,并形成2对鳃丝结构(图版Ⅱ-5)。

    25日龄仔鱼[全长(8.99±0.53) mm],第一鳃弓上出现鳃小片的典型结构(图版Ⅱ-6)。

  • 从28日龄仔鱼[全长(9.07±0.72) mm]到45日龄稚鱼[全长(13.30±0.67) mm],鳃弓显著增长,鳃丝和鳃小片数量增多;泌氯细胞增多、增大;鳃内血管系统发育进一步完善,可见密集的血管网和大量血细胞(图版Ⅱ-7);45日龄稚鱼鳃的结构已经与成鱼鳃结构基本相同(图版Ⅱ-8)。

  • 1日龄仔鱼,在消化道靠背面出现鳔原基,为一团圆形的间质细胞,周围被一簇上皮细胞包裹,其间质细胞中间可见微小的空腔。此时鳔与消化道分化一致(图版Ⅲ-1,箭头处为鳔原基空腔)。

    Figure 图版Ⅲ.  Histology of the swim bladder development of L. maculatus

    3日龄仔鱼,鳔原基继续伸长,周边的结缔组织增厚,鳔与消化道分开,成为一个独立的器官。间质细胞团中央的空腔增大形成原始鳔腔,或称鳔室。在鳔内壁上可观察到不规则的立方状上皮细胞,与早期消化道内壁的矮柱状上皮细胞非常相似(图版Ⅲ-2,箭头处为鳔原基空腔)。

  • 4日龄仔鱼,鳔还未见明显扩张(图版Ⅳ-1)。

    Figure 图版Ⅳ.  Morphology of the swim bladder development of L. maculatus

    5日龄仔鱼,鳔壁细胞扁平化,鳔明显增大,呈圆形(图版Ⅳ-2),在发育时间上与仔鱼开口的时间一致。鳔后下方的多层扁平细胞变为立方状的腺细胞,形成原始气腺,连接着许多微血管网(图版Ⅲ-3)。

    7日龄仔鱼,鳔腔靠腹部的单层扁平细胞增厚,形成多层结构,为波浪状,背部的单层扁平上皮细胞特化为膜状。鳔前部出现鳔管原基(图版Ⅲ-4)。形态学观察,可见鳔进一步扩张(图版Ⅳ-3)

    8日龄仔鱼,鳔腔伸长,呈椭圆形,可见鳔管在胃的背部,一端连接胃,另一端连接于鳔前部。鳔上皮细胞增厚,鳔腔靠背部出现迷网,富含毛细血管(图版Ⅲ-5)。

  • 9日龄仔鱼,鳔管在胃与食道相交处出现开口。鳔腔靠腹部出现气腺,为复杂的多层结构,腺细胞核较大,染色较深(图版Ⅲ-6,箭头处为鳔管开口处)。9日龄(图版Ⅳ-4)及10日龄仔鱼(图版Ⅳ-5)的鳔器官清晰可见,鳔腔开始充气。

    11日龄仔鱼,鳔腔充气,外观变化明显。鳔体积显著增大,呈椭圆形,鳔外膜光反射能力增强(图版Ⅳ-6)。鳔管从胃处脱离,并逐渐往背侧萎缩(图版Ⅲ-7)。

  • 13日龄仔鱼,鳔管退化,鳔上皮细胞增厚为2~3层。鳔受到交感神经和迷走神经的双重调节,在迷网微血管内碳酸酐酶和乳酸的作用下,气体通过血细胞进入气腺,并由气腺进入鳔腔(图版Ⅲ-8)。

    19日龄仔鱼,鳔背部黑色素细胞增多,迷网和气腺更加发达(图版Ⅲ-9)。

    26日龄仔鱼,鳔管已完全脱落,在鳔前端有少量残留(图版Ⅲ-10,箭头处为退化的鳔管)。

3.   讨论
  • 本研究发现花鲈仔稚鱼鳃的胚后发育从组织学上可分为4个阶段:第1阶段(0~3 d),为鳃原基的出现期,此阶段鳃原基形成但未分化,鳃没有呼吸和渗透调节的功能。第2阶段(4~14 d),为鳃丝分化期,此阶段鳃丝原基分化,出现扁平细胞、黏液细胞、柱细胞、泌氯细胞等鳃丝主要构成细胞。第3阶段(15~25 d),为鳃小片分化期,假鳃和各鳃弓上依次分化出鳃小片结构。与条石鲷(Oplegnathus fasciatus)[5]6日龄形成鳃小片及卵形鲳鲹(Trachinotus ovatus)[6]在3日龄形成鳃小片相比,花鲈鳃小片的发生在发育时期上较晚。其与细点牙鲷(Dentex dentex)[7]在15日龄形成鳃小片相近。第4阶段(26~45 d),为花鲈鳃器官完善期,此阶段鳃结构进一步发育,功能逐渐完善。45日龄后鳃结构基本和成鱼相同。

  • 鳃是鱼类的主要呼吸器官,在鱼类的生命活动中起着重要作用。4日龄前,花鲈鳃原基未分化,依靠鳍褶、皮肤及分布于卵黄囊上的丰富血管吸收水中的溶解氧[8],此时初孵仔鱼运动较少,随水漂流或倒立悬停在水层中。4~14日龄,鳃丝上出现血管网,鳃行使呼吸功能,但以仔鱼皮肤进行气体交换为主[7],此时仔鱼开口摄食,运动量增多。15日龄后,鳃分化出鳃小片,鳃小片表面上布满小坑、间隙、沟、隆嵴等,随着鳃小片数量的增多,有效呼吸面积成几何数增加,鳃成为花鲈仔鱼的主要呼吸器官。此时仔鱼出现明显的趋光性,游动活跃[9]

  • 鳃作为鱼类渗透压调节的主要器官[10],当环境盐度变化时,其通过泌氯细胞分泌氯化物维持体内渗透压平衡[11]。6日龄前,鳃中未出现泌氯细胞,仔鱼通过卵黄囊、皮肤、肾脏、肠等进行渗透压调节[12]。6~15日龄,鳃中仅出现零星的泌氯细胞。15日龄后,泌氯细胞随着鳃小片数目的增加而大量增多,分布在鳃小片基部和鳃丝表面,较好地行使渗透压调节和离子平衡的功能。

  • 鳔器官发育对于仔鱼的摄食具有重要的意义,因为仔鱼在摄食的时候,鳔充气良好时消耗的能量较少,故摄食能力较高,存活率也相应较高[13]。而鳔未膨胀的仔鱼会出现生长减缓、存活率降低、脊柱前凸等现象,不能用于养殖[14]。不同鱼种鳔充气的时间不同,如条石鲷[5]在10日龄开始充气。细鳞裂腹鱼(Schizothorax chongi)[15]孵出9 d后,仔鱼鳔充气并开始平游。

  • 本研究发现,花鲈仔稚鱼鳔的胚后发育从组织学上可分为4个发育阶段:第1阶段(1~4 d),为鳔原基的出现期,此阶段鳔原基形成并分化为一个独立的器官。第2阶段(5~8 d),为鳔腔扩张期,此阶段鳔壁细胞扁平化导致鳔腔扩张。此阶段的扩张是非功能性的,仔鱼调节比重的能力弱,多分布在水体表层[16]。第3阶段(9~11 d),为鳔的充气期,仔鱼通过吞咽空气,经鳔管向鳔腔内充气,形成一个椭圆形充满气体的鳔。第4阶段(12 d以后),鳔的迷网和气腺逐渐完善,仔鱼可通过调节鳔内的气体,改变自身比重,完成游泳和摄食。对日本花鲈(L. japonicas)[17]仔稚鱼鳔发育的研究发现,其2日龄出现鳔原基,8日龄鳔开始充气,16日龄鳔充气完成,与本研究有所差异。

  • 鳔器官充气发生在内源性营养向外源性营养转换的关键时期。通过鳔中气体的吸入与释放,鱼体可凭借相应的浮力实现在不同水层的栖息[18]。本研究发现,1~3日龄花鲈初孵仔鱼呈倒立状悬浮于水层中,可能此时为鳔原基的形成阶段,鳔不具有调节比重的能力,而初孵仔鱼还未开口摄食,为了减少因游动而造成的能量消耗,仔鱼仅依靠自身比重悬浮于水层中。5~10日龄时卵黄囊消失,仔鱼浮游水层开口摄食,完成内源性营养向外源性营养的转换。此时鳔扩张和充气可使仔鱼在水中漂浮,并能在各水层进行摄食,其主动摄食的能力提高。此仔稚鱼个体发育阶段鳔充气的正常与否,是育苗生产的重要制约因素之一[19]

  • 盐度、温度、光照强度、光照周期、溶解氧、水表面的油膜、营养条件、甲状腺素、池壁颜色等均会影响鳔器官的充气[13, 20]。马爱军等[16]认为仔鱼吞咽了细菌和有机碎屑,将导致鳔不能正常膨胀;开鳔时间延后,前肠的分化也会进一步阻碍鳔的膨胀。在对斑马鱼(Danio rerio)鳔早期发育的研究中发现,wnt信号通路扮演着重要角色,并从该通路中筛选到sox2、has2、hprt1lelovl1a作为鳔发育的新标记基因[21]。门强等[13]认为仔鱼鳔过度膨胀,会造成鳔功能失调而最终导致死亡。在花鲈育苗生产中,水表面的油膜和盐度是造成仔鱼鳔未能正常充气的主要原因。在仔鱼开口摄食后,每日应及时用表面除膜器去除育苗水体表面油膜;在仔鱼11日龄之前,育苗水体盐度不宜过低,否则将不利于仔鱼在水层表面吞咽空气使鳔充气。

4.   结论
  • 本研究对花鲈早期鳃与鳔器官的发生、发育过程进行了系统观察,并为相应时期的划分提供了科学依据。花鲈仔稚鱼鳃的胚后发育可分为鳃原基出现期(0~3 d)、鳃丝分化期(4~14 d)、鳃小片分化期(15~25 d)与鳃器官完善期(26~45 d)。孵化后第15天,仔鱼分化出鳃小片结构;第45天,稚鱼鳃结构发育完全,与成鱼相同。花鲈鳔器官发育可分为形成、扩张、充气和退化4个阶段,初孵花鲈仔鱼未出现鳔原基,11 d后仔鱼鳔充气完成。育苗生产中,应及时去除水面油膜及有机碎屑,育苗水体应保持一定盐度,保证花鲈仔鱼顺利由水面吞气,进而完成鳔的充气过程。

Reference (21)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return